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Abstract

Feature transformation is an important process following feature extraction for im-
proving classification performance. It has been frequently addressed in the kernel-based
framework utilizing non-linear kernel functions, and the additive kernel equipped with
explicit feature mapping works as efficient and effective (non-linear) feature transforma-
tion. The kernel functions, however, are defined in a top-down manner taking into ac-
count the inherent nature of the features, which makes it difficult to appropriately apply
them to the features whose characteristics are not fully disclosed, such as CNN features.
In this paper, we propose a method to learn an additive kernel of which explicit mapping
serves feature transformation. By means of a bottom-up learning approach leveraging
annotated data, the proposed method builds the kernel function of high generality and
discriminative power even for the CNN features. The experiments on various datasets
using various types of pre-trained CNN features show favorable performance improve-
ment by the learned additive kernel (feature transformation) of which generality over the
datasets and the CNN models is also demonstrated.

1 Introduction
Extracting features is required for effectively representing images and videos in pattern
recognition systems such as on classification. While the methods of BoW [3] and Fisher
kernel [26] have been successfully applied to feature representation so far, in recent years,
the convolutional neural network (CNN) of deep architecture is enthusiastically studied in
this literature [11, 30] and it is empirically shown that the pre-trained CNN also works as a
generic feature extractor with great success [5, 19, 24]. Though it is possible to directly feed
the extracted features into classifiers, we usually transform the features on the basis of their
intrinsic characteristics so as to favorably improve performance.

L2 normalization is one of the simplest transformation, widely applied along with lin-
ear classifiers. Beyond the L2 normalization, the feature transformation is also addressed
in the kernel-based framework [27] utilizing kernel functions to exploit non-linear structure
embedded in the features; from this viewpoint, features are non-linearly transformed into a
Hilbert space in an implicit manner via the kernel function. While the RBF kernel is gen-
erally applied to feature vectors, it is advantageous to apply the kernel functions based on
the intrinsic nature of the features; for example, χ2 kernel [32], intersection kernel [14] and
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Dirichlet Fisher kernel [9] are effective for histogram (BoW) features, and Hellinger kernel
(square root) [2, 26] successfully works in Fisher kernel feature representation. However,
the non-linear kernel function which implicitly transforms features leads to the kernel-based
classifier requiring substantial computation cost both in training and test [27], which prevents
the application to large-scale samples. Additive kernels remedy the problem by providing ex-
plicit feature mapping [32] which serves feature transformation. The additive kernel consists
of component-wise kernel functions which can be well approximated by the inner product of
a finite dimensional explicit mapping, and thereby linear classifiers are efficiently applicable
to so transformed features [32]; the kernels listed above except for RBF belong to a fam-
ily of the additive kernels. Thus, through the feature transformation via the additive kernel,
especially its explicit mapping, we can leverage the discriminative power embedded in the
non-linear kernel function in an explicit form of finite dimension while keeping computa-
tional efficiency.

However, since the additive kernels equipped with explicit mapping are pre-defined in a
top-down manner taking into account the nature of the features, it is difficult to determine
which types of additive kernel function should be applied to the features whose characteris-
tics are not fully disclosed, and we do not know how the pre-defined kernels work for such
features at all. In this paper, we propose a method to learn the additive kernel of high gen-
erality and discriminative power in a bottom-up manner based on actual (annotated) data.
The bottom-up learning approach endows the kernel function with discriminative power,
adapting it even to the features of unknown characteristics; this is the case of CNN fea-
tures [11, 28, 30] which are of our main interest in this paper, though the enthusiastic studies
are now underway to explore the CNN features’ nature [15, 18]. Through such data-driven
learning process, however, the learned kernel function is prone to over-fitting to the dataset
that is used for training, deteriorating generalization performance. We construct data-driven
yet generic kernel functions by harnessing the simple formulation of additive kernels in
which the kernel function operates on a pair of scalar feature component. The explicit map-
ping of the learned additive kernel serves as transforming features, especially pre-trained
CNN features in this work.

2 Proposed Method

We begin with a brief review of additive kernels and then detail the proposed method to learn
the additive kernel based on data. In contrast to the top-down additive kernel method [32], we
first establish the explicit mapping which consequently shapes the additive kernel function.

2.1 Additive Kernel

Given a pair of feature vectors, xxx and yyy ∈ RD, the additive kernel is defined as follows,

k̄(xxx,yyy) =
D

∑
i=1

k(xi,yi), (1)

where xi and yi are the i-th elements of xxx and yyy, respectively. In this formulation, the positive
definite kernel function k operates on each feature component and the responses are summed
up for the additive kernel response k̄; thus the additive kernel is characterized by the kernel
function k. A family of the additive kernel includes the simplest linear one k(xi,yi) = xiyi
and Hellinger kernel k(xi,yi) = sgn(xi)sgn(yi)

√
|xiyi| [2] as well as χ2 kernel k(xi,yi) =
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xiyi
xi+yi

[32] and intersection kernel k(xi,yi) = min(xi,yi) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
∫

φ(γ;x)φ(γ;y)dλ ≈
K

∑
l=1

φ(γl ;x)φ(γl ;y)∆l =
K

∑
l=1

φ̂(γl ;x)φ̂(γl ;y)=φφφ(x)>φφφ(y), (2)

where φφφ(x) = [φ̂(γ1;x), · · · , φ̂(γK ;x)]> ∈ RK approximates the (continuous) function φ(γ;x)
using K control points, which we call K-rank approximation. Given the function φ and the
control points {γl}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [φφφ(x1)

>, · · · ,φφφ(xD)
>]>; in [32], those two ingredients φ and γl are theoretically provided

even for χ2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions φφφ based on data. Since it is quite difficult
to built φφφ from scratch, we resort to the approximated representation of φφφ by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
fm,m = 1, · · · ,M, then the non-linear functions φφφ can be represented by

φφφ(x) =WWW>[f1(x), · · · ,fM(x)]> =WWW>f(x), (3)
where WWW ∈RM×K is the coefficient matrix for the basis functions and f(x)∈RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>WWWWWW>f(y), k̄(xxx,yyy) =
D

∑
i=1

f(xi)
>WWWWWW>f(yi) = tr{F(xxx)>WWWWWW>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD)] ∈ RM×D. (5)

The coefficient matrix WWW defines the additive kernel function as well as its explicit mapping,
WWW>F(xxx) ∈RK×D. Therefore, discriminative learning of φφφ is reduced into optimizing WWW in a
supervised framework using annotated data given basis functions {fm}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features WWW>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{WWW>F(xxx)AAA}+b, (6)
where AAA ∈RD×K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both AAA and WWW are optimized, the classifier (6) is a bilinear form [10] regarding AAA and WWW
which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
AAA is dependent on classification tasks/datasets while the coefficient WWW for basis functions
should be general relying only on the type of feature xxx. In order to enhance generality of
the coefficient WWW , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of WWW by aggressively minimizing the rank K of WWW on the
particular dataset that is used for learning.

We apply an efficient approach to learn WWW , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {xxx j,z j}ND

j=1 of ND samples
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comprising a feature vector xxx j and a label z j for a specific task; on classification, the label
indicates membership to a certain class, z j ∈ {−1,+1}. By integrating the weights AAAD1 and
WWW into VVVD =WWWAAA>D ∈ RM×D, the classifier (6) is accordingly rewritten into

z = tr{VVV>DF(xxx)}+b, (7)
and thereby we can obtain the standard (linear) SVM optimization problem [31] for VVVD,

min
VVVD ,b

1
2
tr(VVV>DVVVD)+

ND

∑
j=1

max[0,1− z j{tr(VVV>DF(xxx j))+b}]. (8)

The optimizer of (8) is denoted by VVV ∗D=WWW ∗AAA∗>D where only AAA∗D depends on the dataset D.
For enhancing the generality of WWW , we prepare various datasets {Dc}Cc=1 such as by

decomposing a dataset of multi-class tasks in a one-vs-rest manner regarding classes as well
as collecting datasets, e.g., MIT67 [22] and VOC2007 [1]. Solving (8) in the respective
datasets produces multiple optimizers {VVV ∗Dc}Cc=1 which share WWW ∗ and are unified into

VVV ∗ = [VVV ∗D1
, · · ·VVV ∗DC

] =WWW ∗[AAA∗>D1
, · · · ,AAA∗>DC

] ∈ RM×CD. (9)
This shows that the coefficient matrix WWW ∗ can be retrieved by decomposing the unified clas-
sifier VVV ∗. We decompose VVV ∗ by means of singular value decomposition (SVD);

VVV ∗ = PPPΛΛΛQQQ>, (10)
where the orthonormal matrix PPP = [ppp1, · · · , pppM] ∈ RM×M is related to WWW ∗ and ΛΛΛ is the diag-
onal matrix of singular values {λi}M

i=1 where i < j⇒ λi ≥ λ j (decreasing order). Even for
the unified classifier VVV ∗ of large column size CD, we can efficiently compute both PPP and ΛΛΛ
by the following eigen decomposition,

VVV ∗VVV ∗>PPP =

(
C

∑
c=1

VVV ∗DcVVV
∗>
Dc

)
PPP = PPPΛΛΛ2, (11)

where VVV ∗DcVVV
∗>
Dc is a matrix of small size M×M. Finally, from the viewpoint of minimizing

the cost tr(AAAAAA>+WWWWWW>) used in bilinear optimization [10], the optimum WWW ∗ is obtained by

WWW ∗ = PPPKΛΛΛ
1
2
K , (12)

where PPPK = [ppp1, · · · , pppK ] and ΛΛΛ
1
2
K = diag(

√
λ1, · · · ,

√
λK). The rank K could be determined

based on the contributing rate τ =
∑K

k=1 λ 2
k

∑M
k=1 λ 2

k
in the decomposition (11). Note again that the

feature vector xxx is transformed into WWW ∗>F(xxx)2 which is then unfolded into a vector.
The proposed method is related to the multiple kernel learning (MKL) [13, 23] by regard-

ing each of the basis function as a basis kernel function. However, the MKL optimizes only
M weights for the basis kernels corresponding to the diagonal weights in WWW which signifi-
cantly degrades capability to describe the additive kernel. In contrast, the proposed method
optimizes the full weight matrix WWW which can represent various types of additive kernel.

2.2.2 Basis Function

From the perspective of approximating the continuous functions φφφ , it is natural to employ
Fourier-based functions as bases. In addition, we can make use of the following generic prior
knowledge on features. The feature values of larger magnitude convey distinct information

1We add the subscriptD to the weight AAA in order to emphasize its dependency on the datasetD, while WWW is not.
2For faster computation, we constructed look-up tables by pre-computing the transformed values.
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about the target while those of lower (or zero) magnitude provide less (or no) information;
this would also be the case of the CNN features. By incorporating the prior knowledge into
the Fourier functions, we determine the basis functions f as

f2m−1(x) = xcos(2πηmx), f2m(x) = xsin(2πηmx), (13)
where ηm are the frequency parameters; in this study, we set η ∈ {0,0.1, · · · ,0.9,1, · · · ,10}3

to produce M = 39 basis functions. These basis functions reflect the significance of the
feature value x, which contributes to efficiently approximate φφφ by using a fewer number of
bases; in particular, x = 0 is always mapped into zeros. Note that the feature vectors xxx are
normalized in a unit L1 norm in advance, xxx← xxx

‖xxx‖1 , for effectively bounding the range of

feature values in [0,1] without loss of generality4.

3 Experimental Results
We apply the proposed method to transform the pre-trained CNN features. The CNN meth-
ods have exhibited excellent performance on image classifications in the last five years [11,
28] and recently applied to extract spatio-temporal features from videos [30]. As in [5], we
employ as feature extractors the CNNs pre-trained on the large-scale datasets. We focus on
three types of widely used CNN models, C3D [30], Alex [11] and VGG [28]; C3D is trained
on sports-1M dataset [7] for extracting motion features, while Alex and VGG are trained on
ImageNet dataset [4] for extracting image features. In these CNNs, the outputs of the first
fully connected layer (fc6) are diverted to features of D = 4096 dimension; for detailed
CNN architectures, refer to the respective papers.

In classification, all the features with/without feature transformation are normalized in
a unit L2 norm and subsequently the linear SVM classifier [31] is applied. We follow the
evaluation protocol provided together with datasets; in CALTECH256 we randomly draw 60
training samples per category and use the rest for test, while in the other datasets the provided
training/test splits are used.

3.1 Performance Analysis
We first analyze the proposed method from various aspects by using C3D features.

3.1.1 Generality of Learned Additive Kernel Across Datasets

The kernel function trained in a certain dataset is obviously applicable to the identical dataset,
but it is unclear how the learned kernel function is applicable to the other datasets of different
task and subjects. It is highly demanded to construct the generic additive kernel which can be
applied to various types of data without re-training. Thus, we first investigate the generality
of the learned additive kernel on C3D feature for action classification on the datasets of
HMDB51 [12], HOLLYWOOD2 [17], UCF101 [29] and UCF50 [25].

We assess the generality by measuring similarity among the additive kernels trained on
different datasets. For that purpose, the proposed method is applied to learn the additive
kernel in a leave-‘one dataset’-out manner; on the above-mentioned four datasets, we can

3In case of η = 0, the basis function is f(x) = x.
4After applying L1 normalization to CNN features of D = 4096 dimension, we find that the maximum feature

value is around 0.005. For further fitting the feature value distribution to [0,1], we scale them as xxx← 200xxx
‖xxx‖1 .
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HOLLYWOOD2 0.9999 1.0000 0.9996 0.9998 0.9999
UCF101 0.9997 0.9996 1.0000 0.9999 0.9998
UCF50 0.9999 0.9998 0.9999 1.0000 1.0000

ALL 1.0000 0.9999 0.9998 1.0000 1.0000

NOTE: DATASET indicates the training datasets excluding DATASET,
while ALL means all four datasets are used for training.

(a) Similarity scores on various ranks (b) Similarity scores among various training datasets at rank 3
Figure 1: Similarity scores among the additive kernels learned in various settings. In (a), blue
and red lines show the ‘minimum’ similarity over cyan and magenta cells in (b), respectively.

obtain four learned kernels each of which is trained on the three datasets out of the four in
a manner similar to leave-one-out scheme, and also learn one kernel by using all the four
datasets. To measure the similarity, the kernel function k(x,y) is quantized into 256× 256
matrix of look-up table by using 256×256 bins on the domain (x,y) ∈ [0,1]2, and then we
compute cosine similarity of the look-up table matrices. Fig. 1 shows the results on various
ranks K of kernels; in this C3D feature, the contributing rate τ reaches close to 1 at the rank
of K = 10. One can see that those learned kernels exhibit quite high similarity, being almost
identical, even though they are trained on different datasets of enough size. Such generality
is rendered by exploiting the shared component WWW from various classifier weights via SVD
(10) . Thus, we can say that the proposed method produces the generic additive kernel and
in what follows we apply the additive kernel that is trained by using all the four datasets.

3.1.2 Rank

There is only one parameter regarding the rank K in the proposed additive kernel. We em-
pirically show the performance on various ranks in Fig. 2a as well as the contributing rate
τ; it actually demonstrates the performance improvement gained by the proposed method,
compared to that of the original L2-normalized C3D feature. The performance is increased
as the rank becomes higher and it is saturated around the rank K = 5 which well reconstructs
the additive kernel with high contributing rate τ > 0.9. It should be noted that even K = 2
successfully improves the performance.

3.1.3 Form of WWW

Next, we validate the form (12) of WWW in which the eigen vectors PPP is scaled according to
ΛΛΛ

1
2 . Any rotation matrix RRR, s.t.RRRRRR> = III, does not affect the kernel function since k′(x,y) =

f(x)>WWWRRRRRR>WWW>f(y) = f(x)WWWWWW>f(y) = k(x,y). Thus, the eigen vectors PPP and their scaling
according to ΛΛΛ are essential ingredients for the kernel function. We investigate how the scal-
ing weight, actually the power order p in WWW = PPPKΛΛΛp

K , affects performance. The performance
results are shown in Fig. 2b. Different scaling slightly degrades the performance and p = 1

2
that minimizes tr(AAAAAA>+WWWWWW>) [10] produces the better performance on average. For the
purpose of gaining generality, it is reasonable to employ the scaling of p = 1

2 .

3.1.4 Basis Functions

We further analyze the proposed method in terms of basis functions f. As described in
Sec.2.2.2, we employ the scaled Fourier functions (13) as the bases to compose an additive
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HMDB HOLLYWOOD2 UCF101 UCF50
order p rank K=5 6 7 5 6 7 5 6 7 5 6 7

0 54.27 54.38 54.31 46.84 46.97 46.93 83.87 83.92 83.90 93.15 93.17 93.17
1
2 54.40 54.44 54.49 46.93 47.00 46.99 83.94 83.93 83.92 93.32 93.28 93.28
1 54.38 54.40 54.44 46.62 46.63 46.63 84.04 84.03 84.03 93.13 93.15 93.15

(b) Scaling (power order) in the form WWW = PPPKΛΛΛp
K . Classification accuracies (%) are shown.
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(a) Rank (c) Basis function
Figure 2: Performance analysis on (a) rank K, (b) scaling in WWW and (c) basis functions,
where (a,b) show the performance improvement gained by the methods, compared to that of
the original L2-normalized C3D feature.

Table 1: Computation time in learning WWW (Sec.2.2). (a) the computation time in each process
of the learning, and (b) details of the SVM learning process (8).

(a) Training processes
Process Time (sec)

SVM (8) 116.448
SVD (10,11) 0.096

Total 116.544

(b) Details of SVM process (8)
Dataset HMDB HOLLYWOOD2 UCF101 UCF50

Num. of sample 6049 823 13320 6618
Num. of class 51 12 101 50

Time (sec) 23.051 2.503 64.492 26.402

kernel function. For comparison, the simple Fourier functions without scaling, f2m−1(x) =
cos(2πηmx),f2m(x) = sin(2πηmx), are applied and the performance comparison is shown
in Fig. 2c. The scaled Fourier bases outperform the simple ones without scaling which
deteriorate performance on the most datasets. This result demonstrates the importance to
incorporate the prior knowledge regarding the magnitude of the CNN feature value; the
scaling factor effectively embeds such a prior knowledge into the basis functions.

3.1.5 Computation Time For Training

We also show in Table 1 the computation time for learning (Sec.2.2) in the proposed method.
While the most time-consuming process is the SVM optimization (8), the SVD-based de-
composition (10) performs with quite a small computation time via (11). It should be noted
that the parallel processing is easily applied to the SVM optimization which individually
operates on the respective datasets.

3.2 Performance Comparison With Other Methods

Next, we compare the proposed method to the other feature transformation methods, explicit
map of χ2 kernel [32] and Hellinger kernel (square root) transformation [2, 26], which are
successfully applied to the hand-crafted features, such as BoW and Fisher kernel features;
in this study the other inefficient kernels, e.g., RBF, without having explicit maps are out
of our focus. In addition to C3D features [30] on action classification, we apply the meth-
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Alex VGG
Dataset Orig. χ2 [32] sqrt [2] Ours6rank Orig. χ2 [32] sqrt [2] Ours6rank

CALTECH256 73.11 72.75 72.14 73.61 83.08 83.08 82.74 83.55
VOC2007 76.56 76.09 75.80 76.57 86.26 86.27 86.02 86.48

MIT67 62.99 63.06 62.44 64.62 74.37 75.12 74.06 75.71
SUN397 48.25 48.64 47.80 49.38 56.80 57.44 56.54 57.99
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(b) Alex (c) VGG
Figure 3: Performance comparison on various CNN features and datasets.

ods to Alex and VGG features on six image datasets: CALTECH256 [6], VOC2007 [1],
MIT67 [22], SUN397 [33], CATDOG37 [20] and DOG120 [8]. As is the case with C3D
(Sec.3.1.1), the learned additive kernels for these CNN image features are found to be gen-
eral across datasets, and thus we use the additive kernel learned on the composite of the first
four datasets (CALTECH256, VOC2007, MIT67 and SUN397) for Alex and VGG features.

For fair comparison, we apply the proposed method of the ranks K ≤ 7; the rank K = 7
produces the same dimensionality as the explicitly mapped features of χ2 [32], while the
Hellinger transformation does not increase the original feature dimensionality. The perfor-
mance results are shown in Fig. 3. In contrast to the case of hand-crafted features, the χ2

and Hellinger transformations do not work well; the χ2-based transformation [32] failed to
improve performance in many cases and to make matters worse, the Hellinger transforma-
tion [2] degrades performance in all cases. On the other hand, the learned additive kernel
favorably boosts the performance, outperforming the other methods; our method of even
rank K = 2 surpasses the χ2-based method and that of K = 6 produces better performance
on average. The learned additive kernel function is adapted to the CNN features whose
characteristics are not fully revealed unlike the hand-crafted features to which the χ2 and
Hellinger kernels are favorably applied.

3.3 Generality Across CNN Models

Lastly, we discuss the generality of the learned additive kernel across CNN models, while
in Sec.3.1.1 the generality over datasets is shown. We first qualitatively compare the ad-
ditive kernels learned on respective types of CNN features, C3D, Alex and VGG. Fig. 4
shows the learned kernel function k(x,y) on (x,y) ∈ [0,1]2 together with the distribution of
feature component value x after L1 normalization. One can see that all the learned kernel
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Figure 4: Learned additive kernel function with feature distribution. The relationship among
the kernels leaned on the CNNs is guessed as (d). This figure is best viewed in color.

functions are formed in a similar shape across the CNN features, assigning larger weights on
moderately higher feature values which are significantly less frequent as shown in the fea-
ture value distribution. The major difference is that the phases are shifted according to the
feature distributions. It would be caused by the difference of data modality; that is, C3D fea-
tures are extracted from videos (spatio-temporal volume) while Alex and VGG are applied
to images (spatial pixel). From this viewpoint, the kernels on Alex and VGG exhibit some
sort of similarity. On the other hand, by considering the architecture of CNN models, the
C3D model [30] is defined similarly to that of VGG [28], containing deeply stacked convo-
lution layers. Thus, in disregard of the phase shift, the two kernel functions learned on C3D
and VGG are similarly shaped. Based on these discussions, we can guess the relationship
shown in Fig. 4d between the kernels adapted to those CNN features; the kernel on VGG has
connection to those of C3D and Alex.

For quantitatively investigating the generality of the learned kernels across CNN models,
we also apply the learned kernel function to the features that are different from the one used
for learning kernel functions; there are three types of features, producing nine combination
of features and kernels in total. The performance results are shown in Table 2. While the
kernels produce the best performance at the corresponding (consistent) features on which
the kernels are learned, they also work well on the other types of feature, outperforming
the original feature (‘Orig.’ in Fig. 3d). As discussed above, the kernel that is leaned on
a similar type of feature is effective; for examples, VGG kernel works well for C3D feature
(similar CNN architecture) and Alex feature (same data modality), whereas the C3D kernel
is less effective for Alex feature which has less connection to C3D. Therefore, among these
CNN models, the kernel trained on VGG is effective exhibiting high generality (Table 2d), in
accordance with the relationship shown in Fig. 4d.

4 Conclusion
We have proposed a method to learn additive kernels in a bottom-up manner based on data for
feature transformation. The non-linear feature transformation is realized by the explicit map-
ping of the additive kernel and the proposed method directly constructs the mapping function
by using proper basis functions derived from Fourier functions, which consequently shapes
the additive kernel function. For enhancing discriminativity and generality, the coefficients
of the bases are learned in the SVM framework by exploiting the shared component across
the linear classifier weights via SVD. In the experiments on various datasets using various
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Table 2: Classification accuracies (%) on various combinations of features and kernels. The
consistent combinations of features and kernels are indicated by gray columns. The best
performance over the inconsistent combinations is highlighted in boldface.

(a) C3D feature (b) Alex feature
kernel learned on

Dataset C3D Alex VGG
HMDB51 54.44 54.14 54.38

HOLLYWOOD2 47.00 45.08 46.68
UCF101 83.93 84.02 84.04
UCF50 93.28 93.15 93.32

kernel learned on
Dataset C3D Alex VGG

CALTECH256 72.89 73.61 73.34
VOC2007 75.99 76.57 76.39

MIT67 64.15 64.62 64.51
SUN397 48.90 49.38 49.24

CATDOG37 80.91 81.82 81.68
DOG120 63.41 65.58 64.80

(c) VGG feature (d) Summary
kernel learned on

Dataset C3D Alex VGG
CALTECH256 83.41 83.58 83.55

VOC2007 86.42 86.49 86.48
MIT67 75.48 75.41 75.71

SUN397 57.99 57.90 57.99
CATDOG37 90.08 89.90 90.17

DOG120 78.85 79.03 78.98

Averaged performance gain (%) across datasets,
compared to the consistent combination.

kernel
C3D Alex VGG

fe
at

ur
e C3D 0 -0.5645 -0.0580

Alex -0.8851 0 -0.2711
VGG -0.1086 -0.0944 0
total -0.9937 -0.6589 -0.3291

pre-trained CNN features, the proposed method exhibited favorable performance improve-
ment, also demonstrating the generality of the learned additive kernel (feature transforma-
tion) across datasets and CNN models; the kernel learned on VGG model exhibits favorable
generality as well as discriminativity improving performance. This work put emphasis on
generality using pre-trained CNNs, and our future works include integration with fine-tuning.
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