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Motivation

Feature transformation is an important process following feature extrac-
tion and several methods such as L2-Hellinger [1] and an explicit map of
χ2 kernel [5] favorably improve classification performance on the feature
vectors represented in the forms of BoW and Fisher kernel. However, it is
difficult to apply those top-down transformation methods, which are de-
signed based on the inherent nature of the features, to the features whose
characteristics are not fully disclosed, such as CNN features; actually,
they fail to improve performance of Alex [2] CNN feature (Fig. 1). In
this paper, we propose a method to learn the feature transformation func-
tion of high generality and discriminative power in a bottom-up manner
based on actual (annotated) data. The learned function corresponds to an
explicit map of an additive kernel and the bottom-up learning approach
endows the kernel function with discriminative power, adapting it even
to the features of unknown characteristics; this is the case of CNN fea-
tures [4] which are of our main interest in this paper, though the enthusi-
astic studies are now underway to explore the CNN features’ nature. Note
that the proposed method transforms the feature vector itself so as to be
applicable to linear classifications unlike the other kernels, e.g., RBF.

Proposed method

Additive Kernel. Given a pair of feature vectors, xxx and yyy ∈ RD, an addi-
tive kernel is defined by

k̄(xxx,yyy) =
D

∑
i=1

k(xi,yi)≈
D

∑
i=1

K

∑
l=1

φ(γl ;xi)φ(γl ;yi)=
D

∑
i=1

φφφ(xi)
>

φφφ(yi), (1)

where xi and yi are the i-th elements of xxx and yyy, respectively, and φφφ is the
explicit map function of the kernel k. While the explicit map φφφ can be
determined according to the predefined kernel k [5], we learn the function
from data in a bottom-up manner, which eventually compose the additive
kernel function (1).
Representation. Since it is quite difficult to built φφφ from scratch, we
resort to the approximated representation of φφφ by using basis functions
like the Fourier fashion:

φφφ(x) =WWW>[f1(x), · · · ,fM(x)]> =WWW>f(x), (2)

where WWW ∈RM×K is the coefficient matrix for the basis functions, and we
define the basis functions {fm}M

m=1 for CNN features as follows.

f2m−1(x) = xcos(2πηmx), f2m(x) = xsin(2πηmx), (3)

where ηm are the frequency parameters; in this study, we set η ∈
{0,0.1, · · · ,0.9,1, · · · ,10} to produce M = 39 basis functions. Thereby,
our objective is to learn the coefficients WWW by utilizing the annotated data.
Learning. The feature vector xxx is transformed into WWW>F(xxx) ,
WWW>[f(x1), · · · , f(xD)] and thus the linear classifier is written by
tr{WWW>F(xxx)AAA}+ b with a classifier weight AAA and a bias b. This induces
a bilinear optimization having difficulty in scalability and generality due
to aggressively minimizing the rank K of WWW on the particular training
dataset. We apply an efficient approach to learn WWW , providing a good
trade-off between the generality and discriminativity. Our optimization
scheme is composed of two steps. First, we optimize the joint weight
VVVD =WWWAAAD on the dataset D by applying the off-the-shelf (linear) SVM
solver, and repeat it for various datasets {Dc}Cc=1, such as MIT67 and
VOC2007. Then, we extract WWW which is shared across {VVVDc}Cc=1 as

VVV ∗ = [VVV ∗D1
, · · ·VVV ∗DC

] =WWW ∗[AAA∗>D1
, · · · ,AAA∗>DC

] ∈ RM×CD. (4)

For that purpose, we utilize the singular value decomposition (SVD),
VVV ∗ = PPPΛΛΛQQQ>, to produce

WWW ∗ = PPPΛΛΛ
1
2 . (5)

Actually, the rank K of the coefficient WWW ∗ is determined based on the
contributing rate in SVD (singular values).

(a) Classification Accuracy (%)
Dataset Orig. χ2 [5] Hellinger [1] Ours6rank

CALTECH256 73.11 72.75 72.14 73.61
VOC2007 76.56 76.09 75.80 76.57

MIT67 62.99 63.06 62.44 64.62
SUN397 48.25 48.64 47.80 49.38

CATDOG37 80.83 80.42 79.83 81.82
DOG120 63.99 63.49 62.20 65.58
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(c) Performance gain by the feature transformation
Figure 1: Performance results for Alex CNN feature.

Results

The proposed method is applied to transform the pre-trained CNN fea-
tures using the models of Alex [2], VGG [3] and C3D [4]; the outputs of
the first fully connected layer (fc6) are diverted to the feature vector of
D = 4096 dimension.

We first assessed the generality by measuring how the learned (ker-
nel) function fluctuates according to the training datasets, and found that
the learned kernels exhibit quite high similarity, being almost identical,
even though they are trained on different datasets of enough size. Such
generality is rendered by exploiting the shared component WWW from vari-
ous classifier weights via SVD (5) . Thus, we can say that the proposed
method produces the generic additive kernel (or feature transformation).

Next, the proposed method is compared with the other feature trans-
formation methods, explicit map of χ2 kernel [5] and Hellinger (square
root) transformation [1], both of which are successfully applied to the
hand-crafted features, such as BoW and Fisher kernel features. The meth-
ods are tested on six image datasets using Alex [2] and VGG [3] features:
CALTECH256, VOC2007, MIT67, SUN397, CATDOG37 and DOG120,
and on four action datasets using C3D [4]: HMDB51, HOLLYWOOD2,
UCF101 and UCF50. The performance results of Alex feature are shown
in Fig. 1. In contrast to the case of hand-crafted features, the χ2 and
Hellinger transformations do not work well; the χ2-based transforma-
tion [5] failed to improve performance in many cases and to make mat-
ters worse, the Hellinger transformation [1] degrades performance in all
cases. On the other hand, the learned transformation favorably boosts the
performance, outperforming the other methods. Through the bottom-up
learning approach, the proposed method adapts the transformation func-
tion, i.e., the additive kernel, to the CNN features whose characteristics
are not fully revealed.
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