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Abstract 
This paper addresses the problem of colorectal tumour segmentation in complex 

real world imagery. For efficient segmentation, a multi-scale strategy is developed 
for extracting the potentially cancerous region of interest (ROI) based on colour 
histograms while searching for the best texture resolution. To achieve better 
segmentation accuracy, we apply a novel bag-of-visual-words method based on 
rotation invariant raw statistical features and random projection based l2-norm sparse 
representation to classify tumour areas in histopathology images. Experimental 
results on 20 real world digital slides demonstrate that the proposed algorithm results 
in better recognition accuracy than several state of the art segmentation techniques. 

1 Introduction 
Colorectal cancer is the third most common form of cancer worldwide, and the second 
highest cause of death from cancer in the UK [1, 2]. The most accurate diagnosis of 
colorectal cancer is based on the interpretation of the features extracted from whole 
colorectal histopathological slides. Diagnostic decisions are generally made by a 
pathologist and the process can be subjective and extremely tedious. Digital pathology is 
the management and interpretation of pathological information from digital microscopic 
images. Compared to traditional pathology, a major advantage of digital pathology is that 
slides can also be analysed using software rather than just manual analysis which depends 
on many years’ experience [3, 10]. Consequently, many researchers have begun to develop  
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computer aided diagnosis methods by applying computer vision techniques to identify the 
spatial extent and location of tumours in diseases such as breast cancer [4], prostate cancer 
[5], lung cancer [6], and colorectal cancer [7] on digitized tissue sections. 

Even so, in many digital processing cases, the chosen method may not perform 
satisfactorily. In general, there are two challenges in automatic detection of tumours in 
histopathological images. One of them is the enormous volume of data which the 
algorithms have to cope with. Compared with radiological and other imaging modalities, 
for instance, a typical whole colorectal histological slide, which has a tissue area of 30 mm 
by 20 mm, is scanned to give an image of 120,000×80,000 pixels, or 27 GB of 
uncompressed colour image data. An example of a digital slide can be seen in Fig. 1. The 
second challenge is that, on the one hand, tumours in histopathology slides usually differ in 
colour, shape, and texture; while on the other hand, cancerous tissue can look similar to 
noncancerous tissue. 

In this paper, we choose to use a coarse-to-fine approach for efficient tumour 
segmentation, for two reasons. Firstly, although an enormous volume of literature has been 
dedicated to image segmentation, there is little consensus on the comparison of 
experimental results with those of pathologists. Secondly, in a whole slide image, 
irrelevant tissue types significantly disturb state of the art classification methods [20, 21, 
19, 18, 38, 39]. For instance, at the feature extraction stage, since different tissue types 
have different morphologies, some of the state of the art methods are not rotation invariant, 
while other approaches which are rotation invariant sacrifice raw pixels precision [39]. If 
we can eliminate irrelevant tissue types, it is much easier for later tumour classification. 

 
   (a)           (b) 
Figure 1: Example of a digital slide: (a) Digital slide of size 97349×73293. (b) Zoomed-in 
view of sub-regions at various resolutions. Best viewed in colour. 

At a low resolution, a pathologist usually spots a possible tumour region using global 
features such as colour and shape to analyse the properties of the region of interest. Here 
we attempt to simulate the procedure of a pathologist. We propose to extract the ROI by 
applying a colour model and morphological operations to the original image. The ROI is 
then optimized using Euclidean distance based histograms in order to reduce the noisy 
margin. Afterwards, to be able to perform tumour segmentation at the best resolution, we 
deploy a Convergence Index (CI) approach to detect nuclei by fitting circles. At the tumour 
classification stage when the resolution is at a high level, we use a rotation invariant 
feature and random projection based l2-norm sparse representation technique for more 
accurate segmentation. The main contributions of our work include: 1) we propose a multi-
scale strategy for tumour segmentation, which simulates the decision making of a 
pathologist from the coarse-to-fine processing. 2) A novel Rotation Invariant Raw 
Statistics (RIRS) feature and random projection based l2-norm sparse representation 
method is developed for making the tumour classification process more effective. 
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The paper is structured as follows. Section 2 presents related work on automatic 
tumour segmentation. Section 3 introduces a novel framework for colorectal tumour 
segmentation. Experimental results using the proposed method are presented in section 4. 
Finally, we provide concluding remarks and perspectives for future work in section 5. 

2 Related work 
Early global tumour segmentation approaches reported in the literature include region 

based and boundary based methods. Colour models based on saliency detection are usually 
used for region detection. Yang [8] introduced a robust colour-based segmentation 
algorithm for histological structures, which used gradients in the colour space to handle the 
issues of stain variability. Sun [30] used Mahalanobis distance to classify tissues into four 
types of colour features. The use of colour saliency can be restricted by the background 
formation and may cause the loss of spatial information of the features. Instead, in this 
paper, we propose an adaptive ROI extraction algorithm using Euclidean distance 
combined with a RGB colour model to refine the ROI. 

Boundary detection is typically used as a category-specific cue. Subbanna [9] used 
Markov Random Field (MRF) for brain tumour segmentation. The main advantage of their 
approach is that the MRF corrects the local mischaracterizations of tissues that typically 
occur due to noise, inhomogeneity and normalization problems. Zhang [31] presented a 
customized boundary encoding method to tackle the issue of over-segmentation, leading to 
small regions. Chen [35] proposed a deformable model to improve segmentation of 
complex structures. However, these boundary based methods still face some challenges in 
the histopathology segmentation process because the boundaries of tumour tissue can be 
mixed with other normal tissue types such as mucosa. Inspired by pathology research, we 
deploy a boundary based method to consider the number of nuclei as a local feature 
indicator of the best image resolution for tumour classification. To our knowledge, this is 
the first time nuclei numbers have been used to determine image resolutions. 

Recently, people have started using local structure based feature classification methods 
for tumour segmentation. Bag of Words (BoW) methods are one of the powerful tools for 
extracting higher dimensional features for image classification. Yoshimuta [12] explored a 
local feature recognition method using BoW to detect colorectal cancer. The issue of using 
BoW is the computational cost. For instance, it took a standard computer over 8 seconds to 
encode an image patch of size 200×200 [18], while a full image has over 5,000 patches. 
Random projection has attracted the attention of the community due to its performance in 
dimensionality reduction. Zhang [13] firstly used 3D regions for colorectal polyp detection 
using random projection, and the results showed that the invasive cancer was discriminated 
with approximately 87% accuracy. This shows that it is promising to investigate random 
projection for tumour classification.  

Alternatively, researchers have suggested multi-scale frameworks for tumour 
segmentation. For example, Wang [11] deployed a multi-resolution method for the 
diagnosis of cervical intraepithelial neoplasia. The tumour tissue was firstly segmented at a 
low (2X) resolution, and the boundaries were further fine-tuned at a higher (20X) 
resolution. Liu [32] exploited a novel shape descriptor with multi-scale diffusion response. 
However, these multi-scale systems used the same resolution at each stage, and could not 
adapt to different images in the same database. Our approach is capable of being adaptive 
to different resolutions and hence achieves better segmentation results. 
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3 Proposed algorithm 
As mentioned in the first section, the proposed framework for automatic colorectal tumour 
segmentation begins with RGB colour segmentation at low resolutions. This is followed by 
applying histogram distance measurement to detect the refined microstructure of the ROI 
boundary. Then we deploy a convergence index method to detect the shape of nuclei by 
counting the number of whole nuclei at different resolutions, and then use this number as 
an indicator of the best image resolution for tumour classification. The rotation invariant 
feature and random projection based l2-norm sparse representation is dynamically 
optimised for classification. Detailed descriptions now follow. 

3.1 Adaptive ROI extraction  
Most of the area in a whole histopathology slide usually contains background clutter and 
normal tissue. We segment these regions using a simple but effective method. Colour is the 
most perceptual factor to the human visual system [36] especially for pathologists. An 
RGB colour model is an operator that allows contrasting regions to be detected, and can 
provide more intuitive histogram information than other common models such as CMY, 
HSI, and L*a*b et al. To achieve this result, two histograms are created, one for the Red 
histogram and the other for Blue histogram in RGB domain. This is because Red and Blue 
components significantly correspond to the stained tumour tissues. Afterwards, we 
generate a number of points and regions which can be separated using mean values to get 
an initial region of interest (see Fig. 2(b)). A morphological Close operation extends the 
boundaries of the foreground to improve the initial ROI region (see Fig. 2(c)). Euclidean 
distance is a popular measure of the similarity between two images [33]. It is used as a 
criterion for refining the ROI extraction at an adaptive resolution (see Fig. 2(d)). To reduce 
processing time and memory requirements, 3x is set as the final resolution for the ROI 
extraction. 

             
             (a)                           (b)                           (c)                            (d) 
Figure 2: ROI extraction step by step: (a) original image, (b) result after R and B threshold, 
(c) result after morphology, and (d) refined ROI overlaid on the original image. 

3.2 Dense nuclei detection using convergence index 
Given the extracted ROI, where the majority of tumour tissue may (or may not) have been 
detected, we now zoom in order to segment the ROI area further because mucosa tissue 
has similar colour features to those of tumour. Normal tissue is usually associated with 
sparse and dispersive nuclei, while proliferation nuclei usually appear in tumour tissue. 
Pathologists note that, nuclei clustering and growth have a close relationship with tumour 
detection. Based on this, we wish to count the number of complete nuclei which can 
indicate the best image resolution for tumour classification. The best resolution is 
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determined by counting nuclei at each resolution, and finding the resolution where the 
number stabilizes. 

Most nuclei detection approaches assume that nuclei are mostly isolated in a brighter 
region with less clutter [15, 25, 26, 34]. However, in our case, nuclei appear often in 
groups and in dark regions filled with background noise. In addition, the nucleus border is 
fused with the background. See Fig. 3(a). Our approach to nuclei detection is based on a 
Convergence Index (CI) [14], which is much more efficient than other nuclei detection 
methods because CI works in a gradient field [37], and just obtains the most noticeable 
information. It begins by using a gradient vector to obtain margin information as shown in 
Fig. 3(b), and the maximization weight of the CI creates the spatial nucleus coordinates 
which form a gradient map shown in Fig. 3(c). Fig. 3(d) shows the corresponding 
accumulation array in 3D. To reduce the influence of noise, we calculate the colour value 
of the centre position in this way: If the intensity value is over a certain threshold (in this 
project the threshold is 0.7, determined experimentally, we set it as a noisy point. Fig. 3(e) 
is the final result of the nuclei detection. The aim of this algorithm is to detect the 
nucleus’s shape by accumulating the number of complete nuclei in a block. A few 
incomplete nuclei near the block border are missing, but this will not affect selecting the 
best resolution if the number of nuclei larger than a threshold of 80 nuclei. 

 
             (a)                        (b)                     (c)                         (d)                            (e) 
Figure 3: Nuclei detection using convergence index: (a) Original nuclei image, (b) gradient 
field of the nuclei, (c) weight distribution of CI, (d) suspected nuclei accumulation array in 
3D, the peaks are the suspected nuclei, (e) result of nuclei detection. Best viewed in colour. 

 
                            (a)                                   (b)                                       (c)   
Figure 4: Rotation Invariant Raw Statistics feature: (a) RISR-pixel feature, (b) RISR-radial 
diff feature, (c) feature dimension based on three features. Best viewed in colour. 

3.3 Tumour classification using RIRS feature and random projection 
based l2-norm sparse representation 
In recent years, the BoW model has shown promise for complex classification [27, 28]. It 
uses local features to form textons, for example MR8 filter [19] and Patch feature [38], and 
to encode a histogram representing the frequency of the repetition of the textons over the 
global image statistically. However, rotation invariance and texton clustering accuracy are 
barriers to its application. 

In this paper, we propose a Rotation Invariant Raw Statistics feature (RIRS) for tumour 
feature selection, and the motivation of the new feature is as follows. Firstly, a 
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histopathological image may not demonstrate any structured direction. Secondly, the state 
of the art features such as MR8, Patch, LBP, PR [16] and SPR [39] have certain 
disadvantages in medical applications. For example, Patch features are not rotation 
invariant; most SPR features are interpolation points which are calculated from the 
neighbouring raw features. A RIRS feature is based on a Patch feature. We choose the raw 
pixels from 4 target orientations. Fig. 4(a) shows RIRS-pixel features; the selected points 
are formed into a RIRS-pixel feature vector. We also use the inter-scale information to 
deploy the RIRS-radial diff feature, as shown in Fig. 4(b). Radial diff feature means the 
absolute difference value of 2 pixels from the same orientation and neighbouring scales. 
For example, in Fig. 4(b), the absolute difference of pixels “a” and “b” is one feature 
from RIRS-radial diff feature. In Fig. 4(c) it is easy to find out that based on a 7 by 7 
image, a RIRS feature is not only rotation invariant but also has fewer feature dimensions. 
The RIRS-pixel and RISR-radial diff features can be calculated by: 

 0,0 1,1 1,2 1,3 1,4 8,1 8,2 8,3 8,4[ , ( , , , ),..., ( , , , )]pixel Tx x x x x x x x x x=        (1) 

    
1,0 0,0 1,2 0,0 1,3 0,0 1,4 0,0

8,1 7,1 8,2 7,2 8,3 7,3 8,4 7,4

[( , , , ),

..., ( , , , )]

rad

T

x x x x x x x x x

x x x x x x x x

= − − − −

− − − −
                  (2) 

where ,i jx is a pixel with different scales and orientations. i means scale and j means 
orientation. 

It is hard to capture the dominant pathological feature in a medical image. However, 
the state of the art BoW methods still use K-means to form the texton dictionary and 
encode histogram features. It has been proven that K-means is easy and fast to implement 
but can only work in the compressed domain and the representation accuracy is limited 
because only the cluster centre is used to approximate the samples [18]. In this paper we 
use l2-norm sparse representation to form textons and code histogram features. We use l2-
norm, instead of K-means, to characterize the texton dictionary and encode histogram 
features based on the following reasons: First, since the training dictionary is an offline 
process, it is not necessary to force the encoding coefficients to be sparse just for 
efficiency reasons. Second, the dominant pathological feature is not easy to classify, and 
l2-norm regularization is good enough to yield a stable solution to the dictionary and 
coding histogram coefficients. In addition, it has been proven that Random Projection (RP) 
is a computationally simple and information preserving technique to reduce a high 
dimensional space to a lower dimensional one [16]. It is natural to fuse RP with l2-norm 
based coding histogram coefficients. The l2-norm based texton learning model is proposed 
by: 

       2 2 2
, 2 2 21

(|| || || || || || )  .  1n T
D i j ji

min x DK K s t d dα λ η α δ
=

− + + − =∑            (3) 

where 1 2[ , ,..., ], m
j kD d d d d R= ∈  is the texton learning model, 1 2[ , ,..., ]lK α α α=  are 

coding coefficients, δ  is the mean of all  without distortion. i.e., 1
1 n

ii
nδ α

=
= ∑  when 

distortion does not appear, 1 1
1 ( )( )n u

i fi f
n uδ α α

= =
= − −∑ ∑ , u is the number of distortion. 

fα is distortion which is 50% upper or downer than mean value. 
The RP based coding histogram coefficients approach is to build a sparse feature vector, 

and RP can be used to avoid the shortcomings of other dimensionality reduction 
approaches such as principle component analysis (PCA) [24]. For instance, PCA cannot 
guarantee that the image is well preserved after dimensionality reduction. Random 

iα



ZHANG ET AL.: MULTI-SCALE COLORECTAL TUMOUR SEGMENTATION USING… 7 
 

projection theory has a strong theoretical basis supported by the Johnson-Lindenstrauss 
lemma [17]. That is, for any two images, 1x and 2

mx ∈ , if sparse space 2( / )d logm ε≥ Ο , 
and 0 1ε< < , the distance between them is preserved: 

                                     1 2 2

1 2 2

|| ( ) ||
1 1

|| ( ) ||
x x
x x

φ
ε ε

φ
−

− ≤ ≤ +
−

                                   (4) 

RP addresses the compressed sensing problem. The high-dimensional space has an 
intrinsic dimensionality that is much lower than the original dimensional space; therefore, 
RP is able to extract texton features without information loss. Within the framework of RP 
based coding histogram coefficients in Fig. 5, for each feature vector of the image, we can 
use RP to produce a compact and sparse representation, where only the entries 
corresponding to the same textons will have non-zero values, while the other entries in a 
compact vector are zeros. Then we can form the histogram coefficient as a new feature.  

Fig. 6 shows two colorectal patches of different classes and their 400 dimension 
histogram features. We can see that the histogram features of different classes are very 
different. For instance, in the upper two histograms, the features around “50”, “100” and 
“350” show strong differences and it is convenient for the later classification. At the same 
time, when texton number changes, the two histograms for the same image patch also 
show a sufficient difference. The upper histograms are built from 7 textons and the lower 
histograms are constructed from 33 textons, and it is clear that the similarity of the two 
histograms based on 33 texton is much lower than 7 textons based histograms, and it is 
easy to find more discriminating features for classification. 

 

Figure 5: l2-norm based texton dictionary learning and Random projection based coding 
histogram coefficients process. Best viewed in colour. 

 

Figure 6: Tumour and mucosa images and their encoding histogram features (upper 
histogram – 7 textons and lower histogram – 33 textons). Best viewed in colour. 

4 Experimental results 
To demonstrate the operation of the proposed method, we perform three sets of 
experiments on ROI extraction, nuclei detection, and malignant tumour classification, and 
then report the results of all the related methods where applicable. Databases are described 
in section 4.1, followed by the results and analysis in section 4.2. 
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4.1 Databases 
A total of 20 Hematoxylin and eosin stained whole colorectal cancer digital slides were 
supplied by a local company and used as the basis for training and testing. These digital 
slides each have a size around 100,000×150,000. Each slide was examined by pathologists 
and each region was annotated to be one of two major classes: tumour and normal. These 
annotated slides were used as the ground truth for the training and testing. 
For malignant tumour identification, the slides are divided into small blocks for training 
and testing.  Each individual block is assigned to one of four categories: Stroma (including 
all fibromuscular tissue, tumour and mucosa (in both transverse and longitudinal variants) 
(Fig. 7). Each block needs to be large enough to demonstrate the characteristics of a 
particular tissue type. For this reason, image blocks were initially chosen to be 200×200 
pixels at adaptive magnification (more details can be found in Section 3.2). In total, we use 
500 blocks per category, giving a total of 2,000 blocks. In addition, we also use a public 
texture database “KTH_TIPS” [23] to validate our proposed method. In our experiments, 
we treat it as a separate database. 

                

                                       (a)                (b)                 (c)                 (d)   
Figure 7: Four categories of colorectal images: (a) Stroma, (b) tumour, (c) 
Mucosa(Transverse), and (d) Mucosa(Longitudinal). 

4.2 Experimental results and analysis 
ROI extraction is demonstrated step by step, from initial to refined segmentation, in Fig. 8. 
The contribution of histogram distance measurement starts from Fig. 8(c); when it satisfies 
a certain criterion, the algorithm will move to the next resolution of the image. Red blocks 
are the optimized areas, compared with the initial and refined results. 

 
                    (a)                            (b)                            (c)                               (d)   
Figure 8: ROI extraction from initial to refined segmentation: (a) original image, (b) initial 
ROI, 1st segmentation at 1X resolution, (c) 2nd segmentation at 1X resolution, histogram 
distance: 0.968, and (d) refined ROI. 5th segmentation at 3X resolution, histogram distance: 
0.9988. Best viewed in colour. 
Fig. 9 shows the nuclei detection using the proposed CI method at different resolutions. We 
can see that the nuclei detection gets easier as we move to higher resolutions. From these 
images, 12 images at 8X are chosen for the best resolution, 8 images at 10X are chosen for 
the best resolution. 
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                     (a)                     (b)                   (c)                     (d)                     (e) 
Figure 9: Nuclei detection using the proposed Hough transform method at different 
resolutions: (a) 1X resolution, (b) 2X resolution, (c) 4X resolution, (d) 6X resolution, and 
(e) 8X resolution. Best viewed in colour. 
There are two key parameters in our malignant tumour classification experiments: 1) The 
RP dimensionality m  and 2) the number of textons L per class. Parameter m  controls the 
sparsity of coding coefficients in the texton encoding. We discover from the experiments 
that when m  is small, the classification accuracy increases rapidly; however, when m  
reaches one third of the texton dimensionality, the classification accuracy is stable. 
Parameter L  is the number of textons per class used in the dictionary, which controls the 
capacity of the dictionary to represent the texture appearance. We conducted a series of 
experiments with different numbers of textons on the texture datasets. The more samples 
are used, the higher accuracy is achieved.  

For our main database, 50 PR dimensions and 70 textons per class are employed. On the 
KTH TIPS database, 10 PR dimensions and 40 textons per class were used. All the 
experiments were performed in the Matlab programming environment on a laptop with a 
2.10 GHz Intel processor and 4GB memory. 

We used the standard random forest [40] as the classifier to classify the results and then 
compared our method with recently published texture classification methods [20, 21, 19, 
18, 38, 39] (see Table 1). When there are enough training samples, most of the methods 
can achieve good classification accuracy for the public KTH_TIPS database. The proposed 
method works well and is only slightly worse than SRP for this database. GLCM suffers 
the impact of texture difference and produces the lowest accuracy. However, the upper and 
lower accuracy in our main colorectal pathology database indicates that these colorectal 
pathology images are very difficult to classify. The proposed method achieves the best 
result on this database, and SRP is in the third place. This may be because SRP uses 
interpolation to achieve rotation invariance; however, interpolation in a high resolution 
medical image will make the K-means more difficult for texton learning and feature 
coding. 

Methods  KTH_TIPS colorectal pathology slide 
ELBP [20] 91.5% 77.5% 
GLCM [21] 71.5% 63.8% 
MR8 [19] 92.6% 86.2% 

 TEISF [18] 97.1% 91.5% 
Patch [38] 93.1% 91.9% 
SRP [39] 98.3% 91.8% 

RIRS-pixel 97.5% 91.9% 
RIRS- radial diff 97.7% 92.2% 

Table 1: Classification rates by different methods. 

Finally, we compare the segmentation results of the proposed algorithm against those by 
pathologists. Examples are shown in Fig. 10, where the green line is the ground truth and 
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the second row shows the results of our method. Root mean squared error (RMSE) [22] is a 
quantitative performance indicator and can be used to evaluate the system performance. 
The average RMSE is 0.0935, the maximum RMSE is 0.151, and the minimum RMSE is 0.052. 

 
Figure 10: Final results compared with ground truth and RMES evaluation: row 1- ground 
truth, row 2- segmentation using the proposed method. Best viewed in colour. 

5 Conclusions and future work 
In this paper we have introduced an efficient multi-scale approach for pathological 
colorectal tumour segmentation. Our method applied a RGB colour model and histogram 
distance for refining the ROI extraction. To find the best resolution adaptively, we used 
convergence index to generate some gradient vectors to obtain nucleus’s margin 
information. We deployed RIRS features and random projection based l2-norm sparse 
representation to balance the classification accuracy. Experimental results show that this 
new approach has better performance than other state of the art techniques in terms of 
recognition accuracy on a database of 20 whole digital slides. In the future, we intend to 
combine a global texture model with our approach. The motivation for this is to further 
reduce the computation cost of the classification. 
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