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Abstract

Convolutional Neural Networks (CNNs) have achieved promising performance in
image classification tasks. In this paper, we develop a new feature from convolutional
layers, called Bag of Surrogate Parts (BoSP), and its spatial variant, Spatial BoSP (S-
BoSP). Specifically, we take the feature maps in convolutional layers as surrogate parts,
and densely sample and assign the regions in input images to these surrogate parts by
observing the activation values. To better handle the objects with different scales and
deformations, and make more comprehensive predictions, we further propose a scale
pooling technique for assigning the features, and global constrained augmentation for the
final prediction. Compared with most existing methods that also utilize the activations
from convolutional layers, the proposed method is efficient, has no tuning parameters,
and could generate low-dimensional, highly discriminative features. The experiments on
generic object, fine-grained object and scene datasets indicate that the proposed feature
can not only produce superior results to fully-connected layer based features, but also get
comparable, or in some cases considerably better performance than the state-of-the-art.

1 Introduction
In recent years, convolutional neural networks (CNNs) have been widely employed to
address the image classification challenge and have produced leading performance on
various benchmark datasets [11]. It has been verified that, the network pretrained on a large
and diverse dataset, such as ImageNet [5], can act as a universal model and be transferred to
other visual recognition tasks [6, 10, 20, 24].

Generally, a CNN consists of three types of layers: convolutional layers, pooling layers
and fully-connected layers. In contrast to most of the research that take the activations
from fully-connected layers as the image representation [1, 34], we derive a new feature
from convolutional layers, called Bag of Surrogate Parts (BoSP), by borrowing the idea
of the well-known Bag-of-Words (BoW) scheme [28]. The main idea is: we take the
feature maps in convolutional layers as surrogate parts, and take the activation values on
the feature maps as assignment strengths for these surrogate parts. Since each unit in
the feature map corresponds to one receptive field, this operation performs like densely
sampling and assigning regions from the input image. The final feature is generated by
concentrating the assignment strengths of the surrogate parts. In contrast to the conventional
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BoW scheme, BoSP deals with regions, rather than keypoints, and attempts to assign the
regions to surrogate parts, which makes it more semantically meaningful. Besides, these
surrogate parts have been inherently defined by the architecture, i.e. the feature maps,
thus eliminates the time-consuming process of generating visual dictionaries. Our main
contribution of BoSP is different from prior research [3, 4, 17, 18, 31] in that it considers
and utilizes the convolutional features in a novel way, which incorporates the statistical
information of the image and does not need to be tuned.

On top of BoSP, there are three other contributions of this paper:
(1) We propose a variant of BoSP, i.e. Spatial-BoSP(S-BoSP), to incorporate more spatial

information, by dividing the image into several regions and concentrating the BoSP inside
each sub-region. This method has been widely adopted in BoW-based approaches [15, 31].

(2) We develop a scale pooling scheme for the assignment of the units. The scheme
allows us to process receptive fields of various sizes, and can handle the deformation problem
inside each region by utilizing the max pooling technique. Scale pooling improves the
performance considerably without enlarging the feature dimension.

(3) We raise a global constrained augmentation approach to incorporate the predictions
of global feature and augmented feature.

Along with the contributions, there are several potential advantages for the proposed
BoSP/S-BoSP:

(1) High accuracy. BoSP/S-BoSP could not only achieve superior performance compared
to the corresponding top-layer activation, they can also deliver comparable or better
performance than the state-of-the-art. For example, the accuracy of S-BoSP on Caltech101
dataset is 93.99% without any data augmentation, already slightly better than the state-of-
the-art, which is 93.42%. After incorporating the proposed global constrained augmentation,
it further improves the state-of-the-art to 94.52%.

(2) No tuning. BoSP/S-BoSP are inherent features of the architecture, i.e. the number of
surrogate parts is pre-defined by the structure and the assignment strengths for the surrogate
parts can be directly achieved by observing the activation values. There is no tuning
parameters for us to determine.

(3) Memory efficient. Compared to other features which are also derived from
convolutional layers [17], or other encoding schemes which combine CNN features and the
variants of BoW [31, 33], BoSP/S-BoSP are relatively low-dimensional (512-D/4608-D), so
they are advantageous in large scale applications.

2 Related Work

BoW-based scheme in deep CNN structures. BoW methods have been widely used in
computer vision systems and achieved state-of-the-art performance. Recently, several studies
attempted to introduce the idea of BoW in the CNN structure. Most of the approaches
utilized its variants, such as VLAD [13] and Fisher vector [21]. For example, Gong et
al. [9] proposed a Multi-scale Orderless Pooling (MOP) scheme which applied VLAD to
encode the fully-connected activations from multiple scales, and then concentrated them
together. Similarly, Yoo et al. [33] also aggregated multi-scale top layer activations of CNN
by using the Fisher kernel. Although these approaches produced encouraging results on
several datasets, the generation of the feature dictionaries is a computationally expensive
process and needs to be designed carefully. In contrast, the BoSP/S-BoSP in this paper are
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inherently generated by the architecture and we do not need to tune any parameters to obtain
them. This avoids the time-consuming and sensitive process of dictionary learning.

Typical usage of convolutional features. The usage of convolutional features can
be divided into two approaches. In the first approach, researchers utilize the variants of
BoW scheme, such as VLAD and Fisher vector, to encode the convolutional features.
For example, Ng et al. [18] employed VLAD encoding method to encode features from
different convolution layers and demonstrated that the intermediate layers produce better
results for image retrieval than the top layers. In contrast, Cimpoi et al. [4] and Wei et
al. [31] took advantage of Fisher vector to encode the deep descriptors from intermediate
layers, and also achieved promising performance on their tasks. In the second approach,
researchers make use of the convolutional activations in a more straightforward way, by
aggregating and compressing them to form the final representation. For instance, Liu et
al. [17] took the feature maps as the indicator maps of parts, and aggregated the local features
of each surrogate part as the image-level representation. Despite promising results, most of
these schemes generate high-dimensional features and thus need additional computationally
intensive post-processing, e.g. PCA compression or whitening. Our method can be seen as
the combination of these two approaches. Similar to [17], we regard the feature maps as
surrogate parts, but do not explicitly calculate and concentrate the features of these parts.
Instead, we only aggregate their statistical strengths, which makes the feature dimension
much lower.

3 Proposed method

In this part, we first describe our proposed BoSP/S-BoSP feature, and then introduce two
approaches to further enhance the performance of the feature: scale pooling and global
constrained augmentation.

3.1 Bag of Surrogate Parts Feature

The general CNN structure consists of multiple layers. When we feed in one image, it will
convolve with multiple kernels to generate various feature maps. Each unit on the feature
map corresponds to one receptive field on the input image, and the units in back feature maps
correspond to larger receptive fields than the front ones.

With the intuition that larger receptive fields convey more semantic information, we
extract BoSP from the pool5 layer (i.e. the last pooling layer) of the VGG model [27].
The specific procedure is: we take the feature maps as surrogate parts and assume that the
activation values represent the assignment strengths for these parts. Therefore, given the
architecture, the number of the surrogate parts is inherently determined, as is the same with
the number of feature maps. For each spatial unit, we can calculate its assignment strengths
for the surrogate parts by observing its activation values. The one-by-one processing of
these spatial units can be viewed as densely sampling and assigning regions of the input
image. Finally, we sum the assignment strengths for the surrogate parts and form a vector
accordingly, i.e. BoSP, whose length is the same with the number of the feature maps. The
framework of the proposed BoSP feature is shown in Figure 1.

Specifically, suppose there are M surrogate parts, and for each image, we can densely
sample n regions (for the pool5 layer of VGG, M = 512,n = 49). The BoSP for this image
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Figure 1: The framework to extract BoSP from the pool5 layer of VGG. We can calculate
the statistical histogram of the surrogate parts by observing the activation values.

can be represented as Eq.(1):

BoSP =
n

∑
i=1

[Pi
1,P

i
2, · · · ,Pi

j, · · · ,Pi
M] (1)

Pi
j is the assignment strength of region i on surrogate part j. We normalize the activations

by dividing by the largest value of the vector, and take the normalized activations as the
assignment strengths, i.e.

Pi
j = Ai

j/max(Ai) (2)

Where Ai means the activation values for the ith region, and Ai
j is the jth element of Ai.

Although the activations are sparse, there are still quite a lot of non-zero values inside.
We only keep the assignment strengths with large values, and modify Eq.(2) as Eq.(3):

Pi
j =

{
0 if Ai

j < mean(Ai)

Ai
j/max(Ai) if Ai

j ≥ mean(Ai)
(3)

Motivated by the spatial pyramid matching (SPM) scheme [15], we further propose a
spatial variant of BoSP, called S-BoSP. The specific procedure is: we divide the image
equally into multiple sub-regions (9 regions in 3 rows and 3 columns in this paper), compute
BoSP inside each sub-region and concentrate them into a single feature vector. Therefore, the
dimension of S-BoSP is 9 times the one of BoSP. For simplicity, we conduct the partitioning
process on feature maps, instead of the input images. As the size of feature maps for the
pool5 layer of VGG network is 7×7 , we need to divide the feature maps in an overlapping
pattern, i.e. some of the surrogate parts would exist in multiple sub-regions.

3.2 Scale Pooling
The BoSP/S-BoSP described above only concern the spatial units at the finest level, and
handle them in a disjoint way, which means to sample and assign regions in input images
with fixed size and position. However, the objects may appear in different shapes, positions
and scales, the independent processing of the spatial units may capture different parts of the
same object and is inferior to assign the objects of different scales, thus makes the resulting
feature less discriminative. To address this problem, we propose a scale pooling technique,
which improves the assignment of objects with different scales and deformations by handling
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Figure 2: The illustration of scale pooling technique for BoSP (We can extract different
number of features from 7 scales. For example, there are 49 red strips for the smallest scale,
and only 1 purple strip for the largest scale. Then we apply max pooling on the features
inside each scale and add them up to form the final feature).

regions of different sizes and positions, together with max pooling operations inside each
region. The procedure of scale pooling is illustrated in Figure 2.

We divide the activations from the pool5 layer into 7 scales for BoSP. Under different
scales, we derive spatial units of different numbers and different sizes. For the sake of
clarity, we name the derived spatial units as coarse spatial units, the coarse spatial units in
scale 1 correspond to the fine spatial units. Under scale i (i ∈ [1,7]), we can derive (8 −
i)2 coarse spatial units, each coarse unit contains i2 fine spatial units, therefore, the total
number of the coarse spatial units is ∑7

i=1(8− i)2 = 140. Next, we pool these coarse spatial
units and calculate their assignment strengths for the surrogate parts utilizing Eq.(3). In this
paper, we utilize max pooling operation inside each coarse spatial unit since it has been
verified to be superior for capturing invariances in image-like data [25]. Finally, we sum the
assignment strengths of the coarse spatial units under different scales together to form the
refined assignment strengths for the image. For S-BoSP, we utilize the scale pooling schemes
inside each sub-region, and then concentrate the features together.

The scale pooling scheme is proposed to handle the image regions of different sizes and
different positions, making the assignment be more relaxable. Also, the scheme is robust
to object deformation inside each coarse spatial unit. Furthermore, the introduction of scale
pooling would not enlarge the feature dimension and does not affect the efficiency greatly.

3.3 Global Constrained Augmentation
Given an input image, we can extract its global feature after resizing it to 224 × 224 for
VGG. However, in some cases one global feature would not be discriminative enough to
classify images, and it is mostly beneficial to utilize data augmentation technique. Without
extra data, one common approach of data augmentation is to generate numerous sub-images
from the input image, and average the sub-image features as the augmented image feature.
Although this approach could extract more information from one image, it only considers
individual parts of the input image, and fails to handle the input image entirely. To make
a more comprehensive prediction, we add a global constraint term upon the prediction of
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augmented features.
The specific procedure is: given an input image, we first resize it to 224 × 224, and

extract the global feature. This feature focuses more on the entire image, and we can achieve
the global prediction based on it, denoted as Preglobal ; Next, we resize the image to make
the smallest side equal S while keeping its ratio, and crop regions of 224×224 with stride of
32 pixels. Thereby, we formulate several sub-images from the input image, each sub-image
may only contain part of the original object. The image feature is the average of the sub-
image features, and this feature concerns more about parts of the image, and based on it, we
make the part prediction, denoted as Prepart . The final prediction is the product of the global
prediction and part prediction:

Pre f usion = Preglobal ×Prepart (4)

As our feature is derived from the convolutional layers, the input image could be of any
size, and we do not need to explicitly crop sub-images. In practice, we only need to input
the resized image once to extract the augmented BoSP/S-BoSP.

4 Experiments
To assess the performance of our method, we carry out a series of experiments on four
datasets, Caltech101 [8], Oxford 102 Flowers (referred to as Oxford102) [19], MIT Indoor67
(referred to as Indoor67) [23] and SUN397 [29], which cover several popular topics in image
classification, i.e. generic object classification, fine-grained object classification, and scene
classification. The details of the datasets are described below:

Caltech101 has 102 classes (101 object categories and a background class) and a total
of 9144 images, and the image number per category ranges from 31 to 800. We randomly
select 30 images per class for training and test on up to 50 images per class. There are 44
‘overlap’ images of the Caltech101 dataset and ImageNet training data. We exclude these
images from the test set.

Oxford102 contains 8189 images for 102 flower categories, and each category contains
40 to 258 images under various scales, pose and illuminations. We use 20 images per class
for training and the rest for testing.

Indoor67 consists of 67 indoor categories and a total of 15620 images. The standard
split for this dataset consists of 80 training and 20 test images per category.

SUN397 is a large scale and general scene dataset, which contains more than 100K
images for 397 scene categories. Each category has at least 100 images. The training and
test splits are publicly available from [29], where each split has 50 training and 50 test images
per category. The classification accuracy is reported by averaging the results of the 10 public
splits.

In our scheme, VGG Net-D[27] is employed as the pre-trained CNN model to extract
deep features. The model is implemented by Caffe [14] package. For simplicity, pre-
trained model weights are kept fixed without fine-tuning. We employ the regularized logistic
regression(LR) classifier for all the experiments owing to its high efficiency, and the LR
classifier is implemented by utilizing the open source library: LIBLINEAR [7]. For fair
comparisons, we set a fixed regularization term λ = 20 1. All of the BoSP/S-BoSP and CNN

1In preliminary test on Caltech101 involving λ , we found that the accuracy was robust to small changes (e.g.
for the global BoSP feature, λ /accuracy: 18/91.68%, 20/91.65%, 22/91.69% and even 60/91.65%) and so 20 was
chosen as a representative value.
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Figure 3: The performances of BoSP for each layer of the VGG network.

features are L2 normalized before sending into the classifier. For the data augmentation,
we resize the images of Caltech101 to let its smallest side S equals 256, while S = 512 for
Oxford102, Indoor67 and SUN397.

4.1 Analysis of our method
In the following, we first verify the advantages to derive BoSP from the pool5 layer, and
then demonstrate the effectiveness of our proposed scale pooling and global constrained
augmentation schemes.

4.1.1 The comparison of BoSP from different layers

The proposed BoSP is derived from convolutional layers, and we can generate multiple BoSP
features from different layers of the network. Intuitively, deeper layer activations contain
more semantic information compared to shallower layer activations, thus could get better
performance. To verify this, we evaluated the accuracy and efficiency of BoSP from different
layers on Caltech101 dataset.

From Figure 3, we can observe that, in terms of accuracy, the performance of BoSP
would generally increase with the layer depth, in which the feature derived from pool5 layer
achieves the best result. This phenomenon confirms our assumption for the advantage of
deeper layers. As for the efficiency, it also increases with the layer depth, since deeper feature
maps are smaller than shallower ones, therefore we need to assign fewer spatial units. The
merits of high layers verify that, it is reasonable to extract our features from the pool5 layer.

4.1.2 Evaluation of the Scale Pooling

In this part, we aim to evaluate the benefits brought by the proposed scale pooling scheme,
and compare our proposed feature with commonly used CNN feature. All of the features in
this part are extracted after resizing the images to 224×224.

The results in Table 1 highlight the advantage of the scale pooling scheme: it could
improve the performance of BoSP/S-BoSP without enlarging the feature dimension, and the
improvement can be very large. For example, scale pooling increases the BoSP features of
Caltech101 and Oxford102 by more than 3%. However, the improvement brought by scale
pooling varies with the feature. Generally, scale pooling is more effective for BoSP than
S-BoSP. For instance, for Caltech101, scale pooling achieves more than 3% improvement
for BoSP (from 88.28% to 91.65%), while only 0.4% increase for S-BoSP (from 93.59% to
93.99%). This is because, for BoSP, we can utilize scale pooling across the whole feature
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Table 1: The comparison of BoSP/S-BoSP with/without scale pooling and the CNN feature
extracted from the last fully-connected layer. The feature without scale pooling is marked
with *

Caltech101 Oxford102 Indoor67 SUN397 Dim
CNN 89.22% 80.60% 68.06% 53.26% 4096
*BoSP 88.28% 81.28% 69.47% 53.68% 512
BoSP 91.65% 85.98% 70.44% 54.12% 512
*S-BoSP 93.59% 83.88% 70.30% 54.52% 4608
S-BoSP 93.99% 85.54% 71.19% 55.41% 4608

Table 2: The comparison of the different predictions on CNN, BoSP and S-BoSP. Preglobal :
prediction of the global feature; Prepart : prediction of the augmented feature in the traditional
way; Pre f usion: prediction of the augmented feature in our proposed global constrained
augmentation way.

Caltech101 Oxford102 Indoor67 SUN397
BoSP S-BoSP BoSP S-BoSP BoSP S-BoSP BoSP S-BoSP

Preglobal 91.65% 93.99% 85.98% 85.54% 70.44% 71.19% 54.12% 55.41%
Prepart 91.68% 93.62% 92.14% 91.38% 74.78% 75.07% 58.91% 60.10%
Pre f usion 92.75% 94.52% 92.23% 91.75% 77.69% 77.91% 61.58% 62.95%

map, and generate more coarse spatial units from seven scales. But for S-BoSP, as we have
divided the feature map into different regions, we can only generate coarse spatial units from
three scales.

On top of that, the results also demonstrate the effectiveness of the spatial scheme, since
most of the S-BoSP performs better than the corresponding BoSP.

We further listed the comparison of the proposed BoSP/S-BoSP with commonly-
used CNN feature, and found that, the proposed BoSP/S-BoSP from the pool5 layer
achieve considerably better performance than the activations from the fully-connected layer,
indicating that the activations from convolutional layers also contain quite discriminative
information for the classification task. Specifically, the BoSP for Oxford102 outperforms
the corresponding CNN by more than 5%, and has a much lower dimension (e.g. 512D vs.
4096D).

4.1.3 Evaluation of the global constrained augmentation

Given an image, we can extract the global feature after resizing it to 224×224. However, in
some cases, extracting only one feature from the input image is not sufficient to make a good
prediction. Therefore, it is common to employ the data augmentation technique to enhance
the performance. The traditional image augmentation scheme is to generate multiple sub-
images from the original image, and average their features as the augmented image feature.
This feature focuses more on ‘parts’ of the image. In this paper, we proposed a global
constrained augmentation method to incorporate the predictions from both part-based feature
and global-based feature, and evaluated this method on the proposed BoSP/S-BoSP features.

From the results in Table 2, we can first observe the effectiveness of the data augmen-
tation, since most of the part-based predictions outperform the corresponding global-based
predictions, in which the improvement of BoSP on Oxford102 can be more than 6%. This
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Table 3: The comparison with the state-of-the-art
Method Base Model Dim Caltech101 Oxford102 Indoor67 SUN397
Decaf [6] AlexNet 4096 86.91% - - 40.94%
Places-CNN [35] AlexNet 4096 65.18% - 68.24% 54.32%
Hybrid-CNN [35] AlexNet 4096 84.79% - 70.80% 53.86%
MPP [33] AlexNet 65536 - 91.28% 75.67% -
MsML [22] AlexNet 51456 - 88.39% - -
MsML+ [22] AlexNet 134016 - 89.45% - -
SPP [12] OverFeat 4096 93.42% - - -
Deep Optimized [2] OverFeat 4096 - 91.3% 71.3% 56%
VGG [27] VGG-D&E 12288 92.7% - - -
ONE [30] VGG-E 4096 - 86.82% 70.13% 54.87%
CrossLayer [17] VGG-E 262144 - - 74.4% -
Deep19-DAG [32] VGG-E 9216 - - 77.5% 56.2%
FV-CNN [4] VGG-E 65536 - - 81% -
NML [26] VGG-D 4096 - 84.3% - -
BoE [16] VGG-D 5000 - - 77.63% -
BoSP (Pre f usion) VGG-D 512 92.75% 92.23% 77.69% 61.58%
S-BoSP (Pre f usion) VGG-D 4608 94.52% 91.75% 77.91% 62.95%

demonstrates the necessity of the data augmentation.
Furthermore, we can also confirm the advantage of our proposed global constrained

augmentation scheme. Regardless of the differences of the global-based prediction and
part-based prediction, it is always beneficial to incorporate them in our proposed method.
Specifically, the improvement on the predictions of Indoor67 and SUN397 can be about 3%.

4.2 Comparison with the state-of-the-art
In Table 3, we compare our scheme with several published state-of-the-art methods which
also utilized the CNN structure.

We can notice that, for generic object classification, our proposed method has the top
accuracy on the Caltech101 dataset. The previous published result of VGG on Caltech101
dataset is 92.7%, which is achieved by concentrating the top-layer features from two models
(i.e. VGG Net-D and VGG Net-E) under three scales (S = 256,384,512). In contrast, the
proposed BoSP from the pool5 layer of one model (VGG Net-D) in our scheme could get
slightly better result with it (92.75% vs. 92.7%), while coming in lower dimension (512-
D). The S-BoSP with global constrained augmentation further raise the state-of-the-art from
93.42% to 94.52%, which verifies the effectiveness of our scheme.

For fine-grained object classification, the spatial scheme does not help on the Oxford102
dataset, as S-BoSP delivers inferior performance compared to BoSP. This is possibly because
the smaller parts of the fine-grained objects are more likely to be similar and do not
distinguish well. Nevertheless, both BoSP and S-BoSP perform better than previous state-
of-the-art result. Notably, BoSP achieves an improvement over the previous best result, from
91.3% to 92.23%, with the dimensionality of 512, demonstrating the high discriminatory
power of our feature.

For indoor scene classification, our proposed method yields comparable results with
the previous best performance on Indoor67 dataset, while having lower feature dimension.
Currently, the FV-CNN employed in [4] achieves the state-of-the-art, with the accuracy of
81%. However, compared with our proposed BoSP/S-BoSP, the dimension of FV-CNN is
much larger (65536 vs. 512/4608), which may be disadvantageous in large scale application.
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For the large scale, general scene classification in the SUN397 dataset, our scheme achieves
significantly better performance than the currently best result, improving the state-of-the-art
from 56.2% to 62.95%.

5 Conclusion and Future Work
In this paper, we derive a new feature from convolutional layers, by densely sampling and
assigning the regions in input images to the surrogate parts. The feature can be efficiently
extracted and is highly discriminative. We also propose two schemes: scale pooling and
global constrained augmentation, to further improve the performance. Through extensive
experiments, we have shown that the proposed feature shows state-of-the-art classification
performance at a low computational cost.

In the future, we will further exploit the convolutional activations in two possible
directions: (1) we would explore the semantic meaning of the surrogate parts, and utilize
the semantically meaningful surrogate parts to help the classification; (2) different layers
contain different levels of detail, and we may be able to combine the BoSP/S-BoSP from
different layers to further boost the performance.
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