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Facial landmark detection is an essential initial
step for a number of facial analysis research ar-
eas such as expression analysis, 3D face model-
ing, facial attribute analysis, and person recogni-
tion. Itis a well researched problem that has seen
a surge of interest in the past couple of years.

However, most state-of-the-art methods still
struggle in the presence of extreme head pose,
especially in challenging in-the-wild images.
Furthermore, as most methods operate in a lo-
cal manner [1, 2], they rely on good and consis-
tent initialization, which is often very difficult to
achieve. While some images attempt to combat
this by evaluating a number of proposals and ini-
tializations, this comes at a computational cost.

In our work, we present a new model —
Holistically Constrained Local Model (HCLM),
which unifies local and holistic facial landmark
detection by integrating head pose estimation,
sparse-holistic landmark detection and dense-
local landmark detection. Our method’s main
advantage is the ability to handle very large pose
variations, including profile faces. Furthermore,
our model integrates local and holistic facial
landmark detectors in a joint framework, with
a holistic approach narrowing down the search
space for the local one.

For a given set of k facial landmark positions
x = {x1,x2, ..., }, our HCLM model defines the
likelihood of the facial landmark positions con-
ditioned on a set of sparse landmark positions
Xy = {x5, s € S} (|S| < k) and image Z as fol-
lows:
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In Equation 1, p(x) is prior distribution over
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Figure 1: Cumulative error curves on 300-W
dataset. Measured as the mean Euclidean dis-
tance from ground truth normalized by the inter-
ocular distance. Note that we use 68 points for
this comparison.

set of landmarks x following a 3D point distri-
bution model (PDM) with orthographic camera
projection.

Some of the results comparing our HCLM
model to state-of-the-art baselines can be seen in
Figure 1. Our model demonstrates competitive
or better performance to most of the baselines.
Furthermore, HCLM demonstrates superior per-
formance in especially difficult images, such as
profile ones. This is due to the both better ini-
tializations and combination of holistic and local
approaches of our model.
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