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Abstract

Hough Transform has been widely used to detect lines in images captured by con-
ventional cameras. In this paper, we develop an event-based Hough transform and apply
it to a new type of camera, namely Dynamic Vision Sensor (DVS). DVS outputs an
asynchronous stream of binary events representing illumination change in the scene. We
implement the proposed algorithm in a spiking neural network to detect lines on DVS
output. Spikes (events) from the DVS sensor are first mapped to Hough transform pa-
rameter space and then sent to corresponding spiking neurons for accumulation. A spik-
ing neuron will fire an output spike once it accumulates enough input contributions and
then reset itself. The output spikes of the spiking neural network represent the parame-
ters of detected lines. An event-based clustering algorithm is applied on the parameter
space spikes to segment multiple lines and track them. In our spiking neural network, a
lateral inhibition strategy is applied to suppress noise lines from being detected. This is
achieved by resetting a neuron’s neighbors in addition to itself once the neuron fires an
output spike. The efficacy of the proposed algorithm is shown by extensive experiments
on both artificially generated events and various real DVS outputs.

1 Introduction

Dynamic Vision Sensor (DVS) is a relatively new event-based video camera. Comparing to a
conventional frame-based camera, DVS offers great advantages in terms of data rate, speed,
and dynamic range [11]. Simulating biological retinas, DVS sensors are sensitive to the in-
tensity change rather than the absolute intensity value. Conventional cameras synchronously
capture frames (e.g. 30 frames per second) with each frame containing the intensity values
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(a) (b) (c)
Figure 1: (a) Dynamic Vision Sensor and (b) its working principle; (c) Block diagram of the
proposed algorithm.

of all the pixels. Pixels with little change are repeatedly reported in different frames, gen-
erating a lot of redundant information and seriously limiting the frame rate and temporal
accuracy of the camera. In contrast, DVS sensors only report pixels with intensity changes
and output them autonomously as an asynchronous stream of binary events. All the pixel
circuits of the DVS work in parallel, and whenever there is an enough change in a pixel’s
intensity, the pixel autonomously reports its position and the polarity of the intensity change
as an event. Since redundant background information is discarded at the focal plane, we will
have much less data volume as well as a very high temporal resolution. Moreover, due to
logarithmic intensity change detection, DVS sensors offer a very high dynamic range, mean-
ing it has no problem in capturing the scenes containing both very dark and very bright areas.
These sensors have been used in many applications such as motion estimation [14], tracking
[5, 18, 22], object recognition [13, 16, 23], and corner points detection [4]. In this work, we
use a DVS to perform line detection based on an event-based Hough transform algorithm.
The DVS used in this study has a 128×128 spatial resolution and 1µs temporal accuracy.

Hough Transform was introduced in 1972 as a feature extraction (especially line detec-
tion) method in computer vision [6]. The main idea of this method is first transforming
every point from the conventional Cartesian coordinates to the parameter space, in which ev-
ery point defines a specific shape, and then finding local maximums in the parameter space
to obtain the shape parameters through a voting procedure. The dimension of the parame-
ter space depends on the shape that we want to extract and its complexity. A line can be
uniquely defined by two parameters and therefore the parameter space for detecting lines
is two dimensional. Three parameters (x and y positions of center and radius) can define
a circle on a plane, and thus the parameter space for detecting circles is three dimensional.
Hough transform can also be used for detecting arbitrary shapes [1]. Hough transform can be
accelerated by managing the needed memory size or limiting the search area in the parameter
space. The problem dimensionality can be reduced by some tricks [19]. Using line detection
as an example, since the line direction is perpendicular to the image gradient vector, the line
slope can be obtained immediately according to the gradient vector and a two-dimensional
Hough transform is then converted to a simpler one-dimensional problem. Another idea for
accelerating the algorithm is using coarse-to-fine searching in the parameter space and is
named hierarchical Hough transform [10].

In this paper, we propose an event-based Hough transform algorithm and implement it
in a Spiking Neural Network (SNN) to perform line detection on DVS event output. SNN
is the third generation of Artificial Neural Network (ANN) models. Compared to conven-
tional ANN, SNN is more biologically plausible [23] since it incorporates spike times into
computational models which mimic the information processing in the biological neural sys-
tem. Recent advances in VLSI technology have solved the spiking neurons’ implementation
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issues [12, 15] that we faced previously because of their higher computational complexity
compared to conventional artificial neurons, and thus have largely boosted the SNN research
and development. SNN have been used for many tasks such as learning [17, 20, 21] and
classification [3, 8, 23]. Among the various spiking neuron models proposed in the liter-
ature [7, 9], the most popular one is Leaky Integrate-and-Fire (LIF) neuron model [2] due
to its simplicity. In our work, we use LIF spiking neurons to construct an two-dimensional
SNN which represents the parameter space of Hough transform for line detection. As shown
in Figure 1, the proposed SNN processes the events from a DVS sensor in an event-driven
manner, and generates output spikes which represent the parameters of detected lines. Local
lateral inhibition is adopted in our SNN to prevent neurons from firing in the wrong locations
and thus suppress noise lines. At the last stage, an event-based clustering procedure is ap-
plied on the parameter space spikes to segment lines and track them. The major contribution
of this work includes: 1) proposing a fully event-driven SNN-based algorithm for fast line
detection, 2) incorporating local lateral inhibition in the SNN for noise line suppression, and
3) applying event-based clustering on SNN output spikes to achieve efficient multiple line
tracking.

The rest of the paper is organized as follows. Section 2 describes the DVS sensor, Sec-
tion 3 summarizes conventional hough transform for line detection. The proposed algorithm
is illustrated in Section 4. Section 5 shows the experimental results and Section 6 concludes
this paper.

2 Dynamic Vision Sensors
Dynamic Vision Sensors (DVSs) are a new generation of cameras that are sensitive to inten-
sity change, more specifically, to intensity logarithmic change. Let us consider the logarithm
of a pixel intensity as shown in Figure 1. Once the logarithmic intensity change is larger than
a predefined threshold, a positive or negative event will be generated depending on the direc-
tion of the change (dark-to-bright or bright-to-dark). Every event consists of four parameters
including the time t, position (x,y) and polarity. All these parameters are integer values ex-
cept the polarity which is binary (+/-). Figure 1 shows the DVS used in this study which has
a 128×128 spatial resolution and 1µs temporal accuracy. According to the characteristic of
a logarithmic function which is more sensitive to small values, DVS is also more sensitive to
darker areas. A small change in low intensity (dark pixel) can cause a significant change in
the intensity logarithm and generate an event subsequently. As a result, there will be more
noise events in darker areas and it is verified by actual experiments as well.

3 Hough transform for line detection
Let us consider the problem of Hough transform for line detection. Every line L can be
uniquely defined by two parameters including the normal distance r from the origin and
angle θ between the normal vector r and x-axis (see figure 2). Assuming r̂ = (cosθ ,sinθ)
as the unit vector perpendicular to the line L, for every point p = (x,y) on the line:

r̂.p = r→ xcosθ + ysinθ = r (1)

Essentially the parameters chosen for determining lines are r and θ . Equation (1) trans-
forms every point from Cartesian coordinate to parameter space (r,θ). In other words, every
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(a) (b) (c) (d)
Figure 2: Hough transform procedure for line detection: (a) A simple line on a plane can
be uniquely defined by two parameters r and θ ; (b) Six points on a line with parameters
(r,θ) = (90,30◦) in a 128× 128 frame; (c) Six sinusoidal curves in parameter space are
coincident at (r,θ) = (90,30◦); (d) Parameter space for 15 sinusoidal curves contains a
bright point at (r,θ) = (90,30◦).

Figure 3: Input and output of the LIF neuron used in this paper.

point in Cartesian space is transformed to a sinusoidal curve in parameter space defined by
equation (1).

Referring to Figure 2, let us consider a line with parameters r = 90 and θ = 30◦ in a
frame with 128× 128 resolution. There are six points highlighted with six different colors
on the line. According to equation (1), every point is transformed to the parameter space as
shown in Figure 2. Obviously all six sinusoidal curves are coincident at (r,θ) = (90,30◦)
since their corresponding points in Cartesian space are all on a straight line. If we perform
this procedure for more points on the line (e.g. 15) and represent the parameter space as an
image, there will be a bright point at (r,θ) = (90,30◦) as shown in Figure 2. Therefore, lines
in a frame can be extracted by finding local maximums in this parameter space.

4 Event-Based Hough Transform in a Spiking Neural
Network

This section illustrates the proposed event-based Hough transform algorithm implemented
in an SNN for line detection.
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(a) (b)
Figure 4: (a) A 128×128 frame and (b) its corresponding parameter space on a 200×300
SNN. θ is limited between−90◦ and 180◦ while r between 1 and 128

√
2≈ 180. Red colored

neurons show the firing neurons from left to right during the red line movement from A to B.
Yellow window indicates local lateral connection (for inhibition). Each neuron is laterally
connected to all neurons that are within a window around that neuron

4.1 Spiking Neuron Model

In this paper, we use LIF spiking neurons to build an SNN that represents the parameter
space of Hough transform for line detection. As shown in Figure 3, every Spiking Neuron
(SN) has some inputs (one input is used here for simplicity) and an output. The input is a
spike train that influences the neuron’s Membrane Potential (MP). Each input spike causes
an increase (for positive event) or decrease (for negative event) of the MP. Note that MP is
always decaying by a fixed rate. Whenever the MP exceeds the + or - threshold, a spike with
corresponding polarity is generated in the output. Then MP is reset to zero and the neuron
enters a refractory period, during which MP remains zero and input spikes are ignored. In
this work, we apply a zero refractory period for simplicity; this can also lead to more out-
put spikes. Note that the firing of other SNs can also force an SN to reset through lateral
inhibition in a network (which will be explained in details in Section 4.2).

We update the MPs and neuron states only when an input spike arrives. Let us define si
as the ith input spike with a time stamp ti and polarity (si =±1). Algorithm 1 is performed
for each input spike si. In this algorithm, vi is the neuron membrane potential, λ the rate of
linear decay and vth the threshold for membrane potential.

Algorithm 1 Updating procedure of a spiking neuron when receiving an input spike (λ =
3mv/ms,vth = 15mv)
for every input spike si at ti

• vi← sign(vi−1)min(|vi−1|−λ (ti− ti−1),0)
• vi← vi + si

• if |vi| ≥ vth then
Generate output spike f = sign(vi) at ti
Reset all laterally connected neurons
vi← 0

end if

end for
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(a) (b)
Figure 5: Local lateral inhibition to suppress noise lines. (a) Without lateral inhibition, SNN
detects three lines (red, blue and green). The best fitted one is the red line detected by
the red neuron in (b). The red neuron is expected to fire before blue or green ones. With
local lateral inhibition, when the red neuron (the correct one) fires, it inhibits all laterally
connected neurons and thus blue and green lines can be suppressed.

4.2 The Proposed SNN for Event-Based Hough Transform

Let us consider a line moving from normal distance A to B with a fixed slope as shown in
Figure 4. The parameter space is built up by a two dimensional SNN with one dimension
for angle θ and the other for normal distance r. To cover all possible lines in a 128×
128 frame, θ and r are limited to (−90◦,180◦) and (1,128

√
2 ≈ 180). We limit r to just

positive values and extend θ instead. A local lateral inhibition strategy is also adopted in
our SNN. The output of every neuron is laterally connected to all the neighbouring neurons
that are located within a window centred at that neuron. The window size chosen here is
10(degree)× 5(pixel). Whenever a neuron fires, it forces itself as well as all neighbouring
neurons within a window to be reset. This window is represented by the yellow rectangles in
Figure 4. During the red line movement from normal distance A to B in Figure 4(a), we will
have many spikes in the parameter space from left to right highlighted by red color in Figure
4(b).

Local lateral inhibition allows the SNN to suppress noise lines (or redundant lines) from
being detected. This is illustrated in Figure 5 which shows the events generated by moving
an edge from left to right in front of the DVS sensor. The left side of the edge is totally
black while the right side is white. All events, whether positive or negative, are shown by
white dots on a gray background. The detected lines using the SNN without local lateral
inhibition are superimposed onto the DVS events. The best fitted line is the red line which
is detected by the red neuron in Figure 5. However, the blue and green lines also cover
many events in the frame and they are detected by the firing of the blue and green neurons
in the parameter space, respectively. These two lines can be suppressed by the local lateral
inhibition. Each neuron is laterally connected to all its neighbouring neurons that are within
a window around that neuron. These connections cause a local competition between the
neurons inside the yellow window. Whenever the first neuron (red one in this case) fires,
it resets all neighbouring neurons, prevents them from firing, and thus suppresses the noise
lines.

The parameter space is built up by N×M SNs; i.e. N rows for θ quantization and M
columns for r quantization. Therefore every neuron located at ( j,k) is identified by (θ j,rk)
values. Algorithm 2 shows the proposed event-based Hough transform and neuron excitation
in the parameter space SNN. Assume that an event ei = (ti,xi,yi,si) is received from DVS,
meaning that there is an intensity change of pixel (xi,yi) at time ti. The term si is either
1 for dark-to-bright change or -1 for bright-to-dark change. For every θ j(1 ≤ j ≤ N), the
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Algorithm 2 Event-based Hough transform and neuron excitation in the parameter space
SNN
for every received event ei = (ti,xi,yi,si)

• Calculate rθ j = argmin
rk

|rk− xi cosθ j− yi sinθ j| for 1≤ j ≤ N and 1≤ k ≤M

• Excite all neurons (θ j,rθ j ) at ti for 1≤ j ≤ N with si (algorithm 1)

• Reset all neurons in first column (k = 1)

end for

corresponding rθ j is calculated using equation (1) and rounded to the nearest possible rk(1≤
k ≤M). Then all neurons (θ j,rθ j)(1 ≤ j ≤ N) inside the parameter space are excited by si
based on algorithm 1. We need to ignore all neurons in the first column (k = 1) because they
can be wrongly excited by the cases that Hough transform of an event is partly outside of the
boundary of the parameter space.

Algorithm 3 Event-based clustering for segmentation and tracking of multiple detected lines
for every received spike fi = (ti,ri,θi) from parameter space

• Delete all clusters Cl = (Tl ,Rl ,Θl ,Texpl ,Nl) that ti > Texpl

• Find the minimum weighted Euclidean distance Di between (ri,θi) and all active clusters
(Rl ,Θl). Suppose Cl=m is the winner; i.e. Di = min

l
||(ri,θi)− (Rl ,Θl)||w = ||(ri,θi)−

(Rm,Θm)||w
• if Di ≤ Dthreshold then

fi belongs to cluster Cl=m

(Tm,Rm,Θm) = (1−α)(Tm,Rm,Θm)+α(ti,ri,θi) (α = 0.1)

if Nm ≥ (K−1) then
Nm = K
Texpm = ti +Tvisible

else
Nm = Nm +1
Texpm = ti +Thidden

end if
else

Generate a new cluster CL+1 = (ti,ri,θi, ti +Thidden,0)
end if

end for

4.3 Segmentation and Tracking

In cases that there are more than one moving line in the frame, we need a segmentation
procedure to distinguish between them as shown in Figure 6. Many spikes are generated
from the parameter space SNN in different locations. Since every line is moving smoothly in
Cartesian space, usually the corresponding spikes in parameter space are "moving" smoothly
as well and they produce a cluster. The lth cluster is defined by a 5-elements matrix Cl =
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(a) (b)
Figure 6: (a) Three moving lines in Cartesian space defined by three colors and (b) their
transformations in the parameter space. Spikes are segmented in three different series corre-
spond to three lines.

Table 1: Quantitative analysis of line detection results on artificially generated line events

Line
Input

Events #
Output

Spikes #
Spike Time (ms)

First/Last
θ error (degree)

Mean/SD
r error (pixel)

Mean/SD
Cyan 9100 158 2630 4994 0.04 0.18 0.01 0.22
Blue 14116 278 6 4953 0.07 0.21 0.12 0.24

Green 18022 418 20 4993 -0.02 0.23 -0.03 0.21
Red 31654 923 0 4970 0.04 0.31 0.06 0.31

(Tl ,Rl ,Θl ,Texpl ,Nl) in which the first 3 parameters show the time and location of the cluster;
i.e. detected line while the last two show the expiry time and visibility situation. We use an
event-based clustering method [5, 22] to do the segmentation and tracking of different lines.
Every cluster is hidden when it is generated for the first time (Nl = 0). With any input spike,
Nl increments till it reaches a maximum value K (5 in our case) and remains unchanged
afterward. A hidden cluster (0 ≤ Nl < K) becomes visible (Nl = K) if it receives enough
support from the network. Every cluster, whether visible or hidden, will be deleted at the
expiry time (Texpl) which is set based on the time of the last received spike. The validity
period for visible clusters (40ms in our case) is chosen longer than the validity period for
hidden clusters (10ms in our case); i.e. Tvisible > Thidden.

For every spike fi = (ti,ri,θi) from the parameter space SNN, we calculate the weighted
Euclidean distances from this spike location to all clusters, and find the smallest distance
and corresponding cluster. If this distance is less than a threshold, the spike fi is considered
as belonging to that corresponding cluster, and the corresponding cluster parameters Cm =
(Tm,Rm,Θm,Texpm,Nm) are then updated; otherwise, a new cluster is generated by this spike
as seen in algorithm 3.

5 Experimental Results

5.1 On Artificially Generated Line Events
We first evaluated our algorithm on some artificially generated line events. As shown in
figure 7, we generated artificial events by moving 4 different lines in a single scene. The first
row shows the moving traces of these lines and the line detection results at two different time
instances. Detected lines are shown in colors, and the input events (within 200 ms around
the time instance) are shown in grey. The second row shows the detection results (in colors)
superimposed on ground truth (dashed lines) during the whole time course (0-5 s) for angle
θ and normal distance r, respectively. We can see that the propose algorithm can accurately
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Figure 7: Line detection results on artificially generated line events. 1st row: Traces of
4 different lines and results (in colors) overlaid on input events (grey pixels) at certain time
instances (1.5s and 3.5s). 2nd row: Results (in colors) superimposed on ground truth (dashed
lines) during the whole time course.

detect and track the four moving lines. Table 1 reports the statistics of the line detection
results. As we can see, the errors are very trivial, which quantitatively demonstrates the
accuracy of the proposed algorithm. Note that the first line (in color cyan) is not detected
until t = 2630 ms. This is because the initial length of this line is quite short, leading to
a small number of input events and thus few output spikes in the corresponding cluster. A
cluster with few spikes at the beginning will remain hidden in order to prevent trivial lines
from being detected/reported.

5.2 On Real DVS Events

We also evaluated the proposed algorithm on various real DVS event streams, and compared
the results with those of conventional frame-based hough transform. The results are illus-
trated in Figure 8. The first row shows the images captured by a conventional camera; they
depict the various scenes that the DVS sensor was recording. The second row illustrates the
propose algorithm’s line detection results (yellow) superimposed onto DVS events (gray).
The third row shows the results of conventional frame-based hough transform algorithm ap-
plied on frames reconstructed from DVS events. For each scenario, we let the frame-based
hough transform detect the same number of lines as our event-based algorithm does. As we
can see, the proposed event-based algorithm provides better detection results, especially in
scenes 3, 5, and 6. In DVS output, there is usually a burst of events on edge pixels which can
be effectively utilized by our proposed framework for better results. In addition, tracking
of the detected multiple lines is very easy using our algorithm, whereas it is quite hard to
achieve using conventional frame-based algorithm.
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scene1 scene2 scene3 scene4 scene5 scene6

Figure 8: Line detection results on various scenarios; 1st row: images captured by a conven-
tional camera, depicting various scenes that the DVS sensor was recording; 2nd row: The
proposed event-based algorithm’s line detection results (yellow) superimposed onto DVS
events (grey); 3rd row: Conventional frame-based hough transform’s results using MAT-
LAB standard functions for line detection with the same number of the lines.

6 Conclusion
An event-based Hough transform approach based on a spiking neural network have been
proposed to perform multiple line detection and tracking on Dynamic Vision Sensors. Ex-
tensive experiments on both artificial and real DVS event streams have demonstrated its
efficacy. SNN with local lateral inhibition is efficient in detecting correct lines as well as
suppressing incorrect ones, while event-based clustering on the SNN output spikes allows
efficient tracking of the detected multiple lines.
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