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Abstract

We approach the problem of model-free visual tracking of objects in videos. Model-
free tracking has its state-of-the-art in a class of methods called tracking-by-detection,
as shown in recent benchmarks. Some top-performing methods use deep neural net-
works (i.e., convnets) to solve the learning-based steps of the tracking algorithm (e.g.,
bounding-box prediction and evaluation). Despite improving accuracy, convnets impose
a high computational cost on trackers, limiting their real-time applications. In this pa-
per, we propose to use deep features from a pre-learned deep-convolutional network in a
computationally efficient way. Here, we use M-Best diverse-sampling to sample a small
yet diverse set of bounding boxes that are likely to contain the tracked object. Given
these bounding boxes, our method performs detection using deep features. The resulting
tracker, named MBestStruck, uses a high-quality feature representation while being com-
putationally efficient. Our tracking approach compares very well to the state-of-the-art,
as shown by experiments done on popular benchmark datasets.

1 Introduction

Locating a moving object in the frames of a video is the main goal of visual-tracking al-
gorithms. These algorithms find applications in robotics, unmanned-vehicle navigation, and
surveillance, which have motivated much progress in the development of solutions. State-of-
the-art tracking methods belong to a class of approaches called tracking-by-detection, whose
excellent performance is evident from results presented at recent benchmarks [19, 28, 29].

Tracking by detection works by the recurring application of a detection algorithm, which
is usually based on classification methods. Avidan [2] posed tracking as a binary classifica-
tion problem where the target object is the positive class, and the background is the nega-
tive. Instead of using a binary classifier, Babenko et al. [3]’s tracker uses multiple-instance
learning. Recently, Hare et al. [10] posed tracking as a structured-learning problem. While
effective, these algorithms are computationally heavy. Faster performance is achieved by
searching around the target’s last location and by sampling a few locations for detection.

The sampling of locations that might contain the target object is a key step in tracking
methods. Despite its importance, sampling has received little attention. Typically, sampling
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is done at pre-defined equidistant image locations [3, 10, 11], or sometimes at random lo-
cations as in Nam and Han [22] and Zhong et al. [31]. Nevertheless, such approaches are
suboptimal because the correctness of the detection step depends on the detection algorithm.

We present a novel sampling strategy that assesses high-quality diverse locations. Our
approach is based on two assumptions. First, the optimal sampling strategy should only
consider locations with a high likelihood of containing the target. Secondly, the locations
must be diverse. Here, we pose sampling as an M-Best diverse sampling problem [4, 16].
Our contributions are: (i) we pose the sampling step as an M-Best diverse sampling problem;
(ii) we present a cascade tracker, called MBestStruck, which uses deep-learning features in a
computationally-efficient manner; (iii) we evaluate our method on publicly available datasets
[19, 28, 29] and show that our tracker performs comparably to the state-of-the-art.

2 Related work
Our tracker is based on the structured tracker by Hare et al. [10] known as Struck. The struc-
tured tracker learns a mapping directly from the space of images onto the space of bounding
boxes. It uses the structured support vector machine to build the object’s appearance model
in an on-line manner. The appearance model in Hare et al. [10] consists of a number of
positive (i.e., target) and negative (i.e., background) support vectors. To run in real time, the
number of support vectors is fixed by a quantity known as a budget. The structured tracker
achieved state-of-the-art results on challenging benchmarks [28, 29].

The remarkable success of deep learning in computer vision has motivated the develop-
ment of trackers based on neural networks (i.e., convnets). Deep convnets extract meaningful
mid-level features in a data-driven way instead of relying on hand-engineered visual features.
This data-driven feature extraction has been incorporated into a number of tracking methods
[12, 22, 26, 27]. Wang et al. used a particle-filter tracker with features based on pre-trained
stacked autoencoder. [12] used a pre-trained convolutional neural network (CNN) with a
online support vector machine to create a target-specific map which performs detection at
a pixel level. Although these methods showed an improvement, the best trackers from the
benchmarks in [17, 28] were still based on hand-engineered features. This changed when
the tracker known as MDNet [22] won the VOT2015 challenge [19] by a large margin.

Indeed, MDNet [22] has been the top performer on all benchmarks [19, 22]. MDNet uses
domain adaptation – a technique where the learning is performed on multiple domains, and
domain information is used for learning. The weights in MDNet’s convolutional network
are initialized from the pre-trained ImageNet model [22]. Prior to tracking, MDNet is pre-
trained to do object detection on a large number of videos. During tracking, MDNet uses
stochastic gradient descent to adapt to the changing appearance of the tracked object.

MDNet is a powerful tracker, but with a high computational cost. It is reported to run at
1 fps on a GPU. In its detection step, MDNet samples 256 bounding boxes from a Gaussian
distribution. As such, there is an implicit trade-off between how many locations are consid-
ered and the tracking accuracy. Therefore, sampling is a key step in the tracking pipeline.

Sampling has received little attention when compared to other components of tracking
methods. Tracking-by-detection methods sample bounding boxes deterministically around
previously seen locations [9, 10] or even randomly [22, 23]. These techniques are suboptimal
because they do not guarantee that the tracked object will be in one of the sampled boxes. A
better approach is to sample in a information-driven way where sampled bounding boxes are
more likely to contain objects, and consequently the target object.
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The use characteristics of generic objects to tell whether a bounding box is likely to con-
tain any object has been successfully applied to tracking [14, 21, 32]. These methods use
object-agnostic metrics, known as objectness measures, to rank sampled bounding boxes.
Zhu et al. [32] re-rank sampled boxes using a structured SVM learned from edge-box scores
[33]. Huang et al. [14] sample bounding boxes with high objectness metrics for scale adap-
tation. Although the above methods sample bounding boxes that are indeed likely to contain
the object, the sampling process is unaware of the object being tracked. In this paper, we
argue that the sampling can be improved if it takes into account object’s appearance.

3 Base tracker
Our tracker is built as a cascade of three main components: a base tracker, a sampling pro-
cedure, and a top-level tracker that performs final detection. Here, we describe both trackers
in our cascade, which are based on the structured tracker by [10]. The structured tracker
uses a structured support vector machine to learn a direct mapping from the space of images
to the space of bounding boxes. Its formulation uses the overlap-over union metric (i.e., a
tracking-evaluation metric) as a loss function for the SVM’s learning step. The structured
tracker outperformed other trackers on the OTB50 and the OTB100 benchmarks [28, 29].

3.1 Structured SVM and the structured tracker
Tsochantaridis et al. [25] generalized support vector machines (SVM) to learn functions in
arbitrary, structured spaces, i.e., f : X → Y . Let (xi,yi)

n
i=1 be a set of input-output pairs,

then the structured SVM solves the following convex-optimization problem:

max
β

∑
i,y

∆(y,yi)β y
i −

1
2 ∑

i,y, j,ȳ
β y

i β ȳ
j 〈φ(xi,y),φ(x j, ȳ)〉 (1)

s.t. ∀i,∀y : β y
i ≤ δ (y,yi)C, and ∀i : ∑

y
β y

i = 0, (2)

where δ (y, ȳ) is 1 for y = ȳ and 0 otherwise. Function ∆(·, ·) is called a loss function, which
for tracking is defined as the “one minus intersection-over-union” metric:

∆(y, ŷ) = 1− |y∩ ŷ|
|y∪ ŷ| . (3)

The loss function is designed to penalize bounding boxes that have low overlap with the
ground truth given their size. Detection is performed using discriminative function F : X ×
Y → R, which is defined as a linear combination of the support vectors, i.e.:

F(x,y;β ) = ∑
i,ȳ

β ȳ
i 〈φ(xi, ȳ),φ(x,y)〉. (4)

The structured tracker by Hare et al. [10] solves Equation 1 using the SMO-step algo-
rithm [7], which monotonically improves the objective function. To keep the computational
cost fixed when tracking, the number of support vectors is limited by a budget. When the
number of support vectors exceeds the budget, the contribution of each vector to the objective
function is computed, and those vectors having the lowest contribution are deleted.
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3.2 Trajectory correction using Robust Kalman filter
To improve the tracker’s robustness to both false-positive detections and short-time occlu-
sions, we use the Robust Kalman filter [6, 24] with a constant-velocity model to correct the
location of the best-detected bounding box. If the filter’s bounding box has a small overlap
(i.e., less than 50%) with the detector’s, the tracker is not updated. Also, if the filter and
detector disagree, we perform the search step both in the neighborhood of the tracker and in
the filter’s. This search strategy allows our tracker to detect and recover from misdetections.

3.3 Objectness prior
We also add an object-agnostic prior, known as objectness, to the discriminative function to
guide the tracker into locations that are likely to contain any object [5]. Following Alexe
et al. [1], we use the straddling and the edge density objectness priors. The straddling metric
captures the degree in which the bounding box cuts segments after segmentation. Formally,
let b = [cx,cy,w,h] be a bounding box, and let S be a set of superpixels after segmentation.
Straddling measures how much the bounding box divides the superpixels, and is given by:

s(b) = 1−∑
i∈S

min(|i\b|, |i∩b|)
|b| , (5)

where s(b) ∈ [0,1], ∀b. Edges can also serve as an objectness measure [1, 33]. Here, we use
a metric known as edge density [1], which measures the fraction of pixels classified as edges
in the bounding box, divided by the perimeter, i.e.:

e(b) =
∑(x,y)∈Perimeter(b)1(edge(x,y))

2(w+h)
, (6)

where edge(x,y) is a binary mask that has ones at edge pixels.

4 Method

4.1 Sampling procedure
To detect the bounding boxes with a high likelihood of the target, we use the detection
function from the base tracker (i.e., ObjStruck). However, if the set of bounding boxes is
chosen as a subset of ObjStruck with the maximum of the detector function, bounding boxes
are all very similar (Figure 1). This lack of diversity of the sampled bounding boxes increases
the likelihood of loss of track. The underlying question is then how to sample a small set of
bounding boxes that are all of high quality, yet are different (i.e., diverse).

The problem of finding high quality, yet diverse solutions of an energy function is called
M-Best-Diverse labeling [4, 16]. M-Best-Diverse contrasts with traditional energy-minimization
approaches, which select only the solution with the lowest energy. Instead, the M-Best-
Diverse labeling seeks a number of low-energy solutions that are diverse. M-Best-Diverse
labeling is formalized as follows. Let E : Y → R be an energy function that we define as a
negative ObjStruck discriminative function:

E(y) =−∑
i,ȳ

β ȳ
i 〈φ(xi, ȳ),φ(x,y)〉−λss(y)−λee(y), (7)
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Figure 1: Left: tracking the “Basketball” sequence. Right: ObjStruck detector values as a
function of the bounding box’s center. Bounding boxes with high detection scores are not
diverse – they are next to each other and have similar dimensions.

where λe,λs > 0 are objectness parameters, and s(·),e(·) are the objectness measures strad-
dling and edge density, respectively [5]. Batra et al. [4] uses a greedy sequential procedure
for finding M diverse labelings, y1, . . . ,yM, according to the following criterion:

ym = argmin
y∈Y

[
E(y)−λ

m−1

∑
i=1

∆(y,yi)

]
, (8)

for i = 1, . . . ,M, where parameter λ > 0 controls a trade-off between the diversity of the
labelings and their quality. The function ∆(·, ·) : Y ×Y → R is called a dissimilarity kernel.
It represents the diversity between any two labellings. Different labeling solutions result in
high diversity values while similar solutions result in small diversity values.

4.2 MBestStruck algorithm

Our combination of the structured SVM with the M-Best selection of bounding boxes is
summarized in Algorithms 1 and 2. The initialization step, compared to the same step in
ObjStruck has an additional structured support vector machine (SSVM) and an additional
dissimilarity function. In the detection step, after applying the objectness measures, M-Best
sampling adds new bounding boxes according to Equation 8 on each iteration. Our method
lowers computation cost by caching the dissimilarity function. Figure 2 shows examples of
tracking using our method MBestStruck.
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Algorithm 1: MBestStruck initialization
input: feature, kernel, top feature, top kernel,

dissimilarity feature gdis, dissimilarity kernel Kdis,
image I, ground truth bounding box Bin

1 DObjStruck := SSVM(feature, kernel);
2 DDeepStruck := SSVM(top feature, top kernel);
3 ∆(y,y′) := Kdis(gdis(I|y),gdis(I|y′)) ;
4 Supdate = sample(Bin);
5 Initialize(DObjStruck, Supdate, I);
6 Initialize(DDeepStruck, Supdate, I);

Algorithm 2: MBestStruck detection
input : image I, last bounding box Blast
output: bounding box Bout

1 Ssearch = sample(Blast);
2 PObjStruck = predict(DObjStruck, Ssearch)
3 + λe straddeling(Ssearch) + λe edge density(Ssearch) ;
4 initialize empty list SMBest ;
5 while size of SMBest is not M do
6 ym = argminy∈Ssearch

[−PObjStruck(y)−λ ∑y′∈SMBest ∆(y,y′)] ;
7 add ym to SMBest ;

8 PDeepStruck = predict(DDeepStruck, SMBest) ;
9 Bout = argmaxb PDeepStruck(b)

5 Implementation

We used the same parameters as in ObjStruck [5]. But the proposed method MBestStruck
introduces two new parameters: the number of bounding boxes to use during sampling, M,
and the trade-off between quality and the diversity, λ . We use two trackers with a differ-
ent set of parameters: one that samples 32 bounding boxes using the M-Best procedure
(M32BestStruck) and one that samples 64 boxes (M64BestStruck). We set λ to 0.1 and
0.0875, respectively. These values were chosen empirically. The dissimilarity kernel, ∆(·, ·),
in Equation 8, is defined as one minus cosine distance. The cosine distance is computed
over HOG features [8]. The top tracker is a structured SVM with a linear kernel and fea-
tures from the pre-trained AlexNet [20]. We use features from the fc7 layer that result in
4,096-dimensional feature vector, and implementation from Caffe [15].

ScaleDeepStruck. To isolate the effect of sampling from the deep features, we define an-
other tracker called ScaleDeepStruck, which works just as MBestStruck but it does not use
the M-Best sampling procedure. ScaleDeepStruck samples bounding boxes deterministi-
cally in the small vicinity (i.e., 15 pixels away or less) of the base tracker’s best detection.
The samples are computed by linearly spacing the center of the bounding box in the polar
coordinates and by varying translation, scale, and aspect ratio. In this experiment, we sample
the same number of bounding boxes as we do for M32BestStruck (i.e., 32).
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ScaleDeepStruck. To isolate the effect of sampling from the deep features, we define an-
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samples bounding boxes deterministically in the small vicinity (15 pixels away or less) of
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Figure 2: MBestStruck tracking the ‘Ironman’ sequence. Colored rectangles correspond
to bounding boxes of the final tracker’s detection (Blue), the current state of the Robust
Kalman filter location (Green), and bounding boxes sampled via Equation 7 (Red). After
initialization on Frame 1, M-Best sampling allows to assess a rich set of potential candidates
as seen in Frames 7 and 9. Because of strong illumination changes, the tracker mis-detects
in Frames 11, 13, 16, and 18. Nevertheless, M-Best sampling includes the correct bounding
box in Frames 16 and 18. After a drift of the tracker, and lack of a correct bounding box via
M-Best sampling procedure, the tracker recovers via the Robust Kalman filter (Frame 19).

Figure 2: MBestStruck tracking the “Ironman” sequence. Rectangles correspond to bound-
ing boxes of the final tracker’s detection (Blue), the current state of the Robust Kalman filter
location (Green), and bounding boxes sampled via Equation 8 (Red). After initialization
on Frame 1, M-Best sampling allows to assess a rich set of potential candidates as seen in
Frames 7 and 9. Because of strong illumination changes, the tracker mis-detects in Frames
11, 13, 16, and 18. Nevertheless, M-Best sampling includes the correct bounding box in
Frames 16 and 18. After a drift of the tracker, and lack of a correct bounding box via M-Best
sampling procedure, the tracker recovers via the Robust Kalman filter (Frame 19).
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Figure 3: Overlap and precision metrics on [28] dataset.

Speed. M32BestStruck’s running speed is 0.15 frames per second on a single-threaded
single-core 2.4 GHz processor. Deep feature extraction accounts for 30% of the total com-
putation. In comparison, ObjStruck (base tracker in the cascade) runs at 1.7 FPS.

6 Results

We tested our method on the datasets [19, 28, 29], which have been used for recent tracking
benchmarks, and are publicly available. By using these datasets, we can demonstrate our
method’s effectiveness and also show how it compares to the state-of-the-art. Our evaluation
included the state-of-the-art tracker MDNet [22], which won the VOT 2015 benchmark [19],
as well as other trackers such as MUSTer [13], MEEM [30], and the original Struck [10].
We also included our own Struck implementation (RawStruck), and a number of structured
tracker extensions: structured tracker with trajectory correction using Robust Kalman filter
called RobStruck [6] and object-aware structured tracker called ObjStruck [5].

OTB50 dataset. We tested MBestStruck on Wu et al. [28]’s dataset. Success and precision
curves are shown in Figure 3. The curves show that ScaleDeepStruck has lower tracking
performance than our base tracker (ObjStruck). This drop in performance happens because
the bounding boxes used for detection in the deep SSVM rely on a single-best detection
from a base tracker. This dependency on a single detection implies that a single error of
the base tracker immediately propagates to the deep SSVM. Additionally, we observed that
when ScaleDeepStruck failed, it did early. To benefit from the discriminative ability of deep
features, many support vectors need to be created. By failing early, ScaleDeepStruck was
unable to collect enough support vectors to correctly detect scale and aspect ratio.

Our proposed tracker, MBestStruck, in contrast, significantly improved tracking metrics.
This improvement is due to the quality of the bounding boxes sampled by the M-Best pro-
cedure. Having a few, but different bounding boxes that have high-detection scores from the
base SSVM simplifies detection done via deep SSVM. Remarkably, M32BestStruck uses the
same number of bounding boxes as ScaleDeepStruck (e.g., 32).
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Figure 4: Overlap and precision metrics on [29] dataset.
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Figure 5: Sensitivity analysis (λ parameter) done on the VOT2015 dataset with M = 64.

OTB100 dataset. Results of the evaluation done on the extended benchmark [29] are
shown in Figure 4. Here, MBestStruck improves upon both ObjStruck and ScaleDeepStruck.

VOT 2015. We also tested our tracker on the VOT 2015 benchmark Kristan et al. [19].
Here, a tracker called struck [10] is an extension of the original structured tracker by Hare
et al. Results are summarized in Table 1. The winner and the runner-up in the VOT 2015
benchmark used deep learning in their feature extraction step. Thus, it was expected for
MBestStruck to perform well. What is more remarkable is the amount of improvement in
the overlap metric. Unlike evaluations on OTB50 and on OTB100, M64BestStruck performs
much better than M32BestStruck. This is due to the re-initialization evaluation protocol of
the VOT2015 benchmark. Re-initialization allows for multiple failures during the tracking
which in turn decreases the role of how early the tracker failed. In the OTB100 evaluation,
once the tracker loses track, recovery becomes unlikely. Because more bounding boxes are
sampled, M64BestStruck has a better discriminative ability as shown in the evaluation.

Parameter λ controls the trade-off between accuracy and diversity, and plays a crucial
role in our method. Figure 5 shows the accuracy versus λ for M = 64. The results suggest
that there is a non-linear dependency. A drop in accuracy after λ = 0.0875 indicates that
once solutions are too diverse, the tracker is more likely to make a mistake.
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Table 1: Evaluation results on the [19] dataset.

Expected overlap Overall

MDNet 0.3783
DeepSRDCF 0.3181
EBT 0.3130
M64BestStruck λ = 0.0875 0.2967
srdcf 0.2877
LDP 0.2785
M32BestStruck λ = 0.1 0.2774
sPST 0.2767
scebt 0.2548
nsamf 0.2536
struck 0.2458
rajssc 0.2420
s3tracker 0.2403
ObjStruck 0.2355

Expected overlap Overall

sumshift 0.2341
SODLT 0.2329
DAT 0.2238
RobStruck 0.2198
OACF 0.2190
MCT 0.2188
mkcf_plus 0.2095
tric 0.2088
AOGTracker 0.2080
sme 0.2068
mvcft 0.2059
srat 0.2031
dtracker 0.2022
muster 0.1950

7 Conclusions
We presented a tracking-by-detection method that both samples high-quality bounding boxes
and takes advantage of deep-learning features, while keeping computational cost low. Here,
we use a technique for sampling a small but diverse set of bounding boxes and showed
how our tracker can be integrated with powerful features extracted using a pre-trained deep-
convolutional network. We also showed that sampling a small number of bounding boxes
built on top of the base tracker is feasible, thus making it computationally efficient while still
keeping the tracker accurate.

We extensively evaluated each of our trackers on the most popular datasets and bench-
marks [18, 19, 28, 29], and showed that our method improves upon the baseline.
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