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Abstract

Weakly-supervised object localization methods tend to fail for object classes that
consistently co-occur with the same background elements, e.g. trains on tracks. We
propose a method to overcome these failures by adding a very small amount of model-
specific additional annotation. The main idea is to cluster a deep network’s mid-level
representations and assign object or distractor labels to each cluster. Experiments show
substantially improved localization results on the challenging ILSVRC 2014 dataset for
bounding box detection and the PASCAL VOC 2012 dataset for semantic segmentation.

1 Introduction

Figure 1: Failure cases of weakly-supervised
object localization: based only on per-image
class labels one cannot distinguish between
objects (train, snowmobile) and consistently
co-occurring distractors (tracks, snow).

A crucial step for automatic systems for im-
age understanding is the ability to localize
objects in a scene in the form of bounding
boxes or segmentation masks. Over the last
decade, computer vision research has made
great progress on this task by employing ma-
chine learning techniques, in particular deep
learning. However, learning-based methods
require large amounts of annotated training
data, and manually annotating images with
object locations is a tedious and expensive
process. It is therefore an important, and
largely unsolved, problem to develop object
localization methods that can be trained from weak supervision, by which in the context of
this work we mean per-image class labels or tags. Analyzing the existing methods in this
field, it becomes apparent that certain object classes, for example trains or boats, are consis-
tently harder to localize from weak supervision than others, in the sense that there is a big
gap between the prediction quality of the models trained from just per-image class labels and
the quality achieved by models trained with full supervision.

One major reason for these failure cases is illustrated in Figure 1. Weakly-supervised
object localization tends to fail when object classes systematically co-occur with distractors
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(background or certain other classes), for example trains with tracks. Per-image class anno-
tation simply does not contain necessary information to reliably learn the difference between
objects and distrators. In this work, we argue that the best way to overcome this problem is
to collect a tiny amount of additional annotation, which we call micro-annotation.

The approach relies on the hypothesis that even though it might be impossible for a
classifier to learn from weak per-image annotation which parts of an image are the object
of interest and which are distractors, it will still be possible to distinguish both groups from
each other by clustering their appearance in a suitable representation. Then, all we need in
order to improve the quality of a weakly-supervised object localization systems is a way to
find out which clusters belong to distractors – which is an easy task for a human annotator –
and suppress them.

This micro-annotation approach can be used in combination with many existing locali-
zation methods. In this work we combine it with the current state-of-the-art methods for
weakly-supervised bounding box prediction and for weakly-supervised semantic segmen-
tation, showing improved results on the challenging ILSVR2014 and PASCAL VOC2012
datasets.

Apart from its practical usefulness, an interesting aspect of this approach is that it asks
for user annotation after an initial model has already been trained. This allows the requested
information to depend on the original model’s output, hopefully with the effect that the new
information has a maximally beneficial effect on the prediction quality. This setup resem-
bles active learning, but with an even better relation between the amount of annotation and
the model improvement. In active learning, the annotation provides information through the
labeling of individual images, and each provided label typically influences the model param-
eters by an amount inversely proportional to the total size of the training set. Consequently,
active learning is most beneficial for models trained on small datasets. In our approach, a
single user interaction can have a large effect on the model parameters and thereby the pre-
diction quality, namely when it establishes that all detected patterns of a certain type are
distractors and should be suppressed. The size of the training set plays no role for this ef-
fect, and indeed we observe a significant improvement even for models trained on very large
datasets.

2 Related work
Many methods for object localization have been proposed that can be trained in a weakly-
supervised way from per-image class label annotation. The majority of these methods pre-
dict either object bounding boxes [1, 2, 3, 5, 7, 28, 29, 38, 43] or per-pixel segmentation
masks [14, 18, 19, 20, 21, 30, 31, 32, 33, 34, 39, 40, 41]. The currenlty most successful
approaches obtain localization hints from convolutional neural networks that are trained for
the of image classification, e.g. [14, 43]. The micro-annotation method can in principle be
used on top of any of such method, as long as that has the ability to produce per-location
score maps.

Much fewer works have studied how the process of data annotation can be improved by
the power of strong computer vision systems. Two related research directions are learning
with humans in the loop [4] and active learning [25]. In the human in the loop concept, an
automatic system and a human user work together during the prediction stage. For example,
in a fine-grained classification task [4, 6, 36, 37], the machine would output a selection
of possible labels and the human user would pick the most appropriate one. Typically, this
process does not improve the model parameters, though, so feedback from a human is always
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Figure 2: Schematic illustration of the proposed micro-annotation approach: (i) for every
image region across all training images that is predicted to show the object of interest (here:
train), compute its mid-level feature representation (pattern) and form a pool of patterns, (ii)
find characteristic clusters in this pool by spectral clustering, (iii) visualize the clusters by
heatmaps and ask a user to annotate them as representing either the object or a distractor and
(iv) at test time modify the produced localization maps by discarding regions that correspond
to the distractors.

required to make high quality predictions. Active learning also has the goal of harvesting
human expertise, but it does so during the training stage: an automatic system has access to
a large number of unlabeled images and can ask a human annotator to specifically annotate a
subset of them [9, 12, 13, 22]. This procedure can reduce the amount of necessary annotation,
e.g. when the system only ask for annotation of images that it is not already certain about
anyway. In the context of object localization, a more efficient weakly-supervised variant of
active learning has been proposed in which a human user only has to annotate if a predicted
bounding box is correct or not, instead of having to draw it manually [17]. Our approach
differs from these setting in particular in the fact that we do not ask a user to provide feedback
about individual images, but about clusters in the learned data representation, which reflects
information extracted from the whole training set. Thereby, we require much less interaction
with the annotator, namely in the order of the number of classes instead of in the order of the
number of training images.

On the technical level, our method is related to recent approaches for discovering object
detectors in deep convolutional neural networks [16, 26, 42]. However, these rely on the
assumption that part-detectors correspond to individual convolution filter outputs, whereas
our clustering approach finds co-occurring patterns in the distributed representation learned
by the network. The fact that our method identifies image structures by clustering visual rep-
resentations across many images resembles image co-segmentation [23]. It differs, however,
from these earlier works in how it organizes the clustering process and how it uses the struc-
ture that are found.
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Algorithm 1: Spectral clustering algorithm
input : patterns Ay, eigenvalue threshold ρ (default: 0.7), lower bound m (default: 2)

and upper bound M (default 4) for the number of clusters
Compute the similarity matrix: W y ∈ R|Ay|×|Ay| with W y

a,b = 〈a,b〉 ≥ 0 for all a,b ∈ Ay.1

Compute the diagonal matrix: Dy ∈ R|Ay|×|Ay| with Dy
a,a = ∑b∈Ay W y

a,b for all a ∈ Ay.2

Compute the Laplacian matrix: Ly = Dy−W y.3

Compute the M smallest eigenvalues {λ1, . . .λM} and eigenvectors {v1, . . .vM} of4

(Dy)−1Ly by solving the generalized eigenvalue problem Lyv = λDyv.
Set the number of clusters, k, as the number of eigenvalues below ρ or the lower bound.5

Construct matrix U = [v1 | · · · |vk] ∈ R|Ay|×k.6

Let ua be the row of U that corresponds to a pattern a.7

Use k-means to cluster the matrix rows {ua}a∈Ay into clusters, {U1, . . . ,Uk}.8

output: clustering Py = {C1,C2, . . . ,Ck}, where Ci = {a|ua ∈Ui} for i = 1, . . . ,k

3 Improving Object Localization By Micro-Annotation
In this section we formally introduce the proposed procedure for collecting micro-annotation
(illustrated in Figure 2) and improving object localization (illustrated in Figure 4). The main
steps for obtaining the additional annotation for each class are: (i) represent all predicted
foreground regions of all images by feature vectors, (ii) cluster the feature vectors (iii) visua-
lize the clusters and let an annotator select which ones actually corresponds to the object
class of interest. The information about clusters and their annotation can then be used to
better localize objects: (iv) for any (new) image, predict a foreground map using only the
image regions that match clusters labeled as ’object’.

In the rest of the section we explain these steps in detail. For this, we denote the set
of training images by D and assume a fixed set of semantic categories Y that we want to
localize. The subsequent construction can be performed independently for each object class.
By y ∈ Y we always denote the current class of interest.

We assume that we are given a pretrained deep convolutional neural network, f , that pre-
dicts the presence of semantic categories for an input image X , but that can also be leveraged
to predict the spatial location of semantic objects in input images. Formally, we assume that
each image is regularly split into a set of non-overlaping rectangular regions, U , and that f
gives rise to a scoring function that assigns a localization score, Sy

u(X), to each image region
u ∈ U . Furthermore, we assume the availability of a thresholding procedure that converts
score maps, Sy(X) ∈R|U |, to a set of image regions, Dy(X)⊂ U , that represent the predicted
localization of the class y. We discuss particular choices for the functions S and D, in Section
4.

(i) Region representations. At any fixed layer of the deep network we can form a feature
vector, φu(X) ∈ Rk, (called a pattern) for any region, u ∈ U , by concatenating the real-
valued convolutional filter activations from the fixed layer. For simpler use in the clustering
step we assume that φu(X) has nonnegative entries, e.g. after a ReLU operation, and that
it is L2-normalized. These are not principled restrictions, though. Arbitrary features could
be used in combination with a different clustering algorithm. We form a pattern set Ay =
{φu(X)|∀u ∈ Dy(X),∀X ∈ D}, i.e. the features of all image regions with predicted label y.

(ii) Clustering. We partition the set Ay into a group of clusters, Py = {C1, . . . ,Ck}, by spectral
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Figure 3: The schematic illustration of the annotation process. For any semantic category, we
visualize corresponding mid-level feature clusters by heatmaps. An annotator marks every
class as either representing an object of interest or background.

clustering [35]. The number of clusters is determined automatically using the fact that the
k-th eigenvalues of the graph Laplacian (computed during the clustering) reflects the quality
of creating k clusters (Algorithm 1, line 5).

General spectral clustering does not scale well to large datasets, because when used
with a generic similarity measure it requires memory quadratic and runtime cubic in the
number of patterns. This is not the case for us: we use a linear (inner product) similarity
measure between patterns, which allows us to avoid storing the quadratically sized similarity
matrix (line 1) explicitly. The necessary eigenvalue problem (line 4) we solve efficiently by
the Lanczos method [15], which requires only low-rank matrix-vector multiplications. The
resulting algorithm scales linearly in the number of patterns to be clustered and can thereby
be applied even to datasets with millions of patterns.

(iii) Cluster visualization and annotation. Our main assumption is that any cluster, C ∈ Py,
will correspond either to (part of) the object of interest, or to a distractor. To identify which
of these possibilities it is, we introduce an efficient annotation step.

For each class, we randomly sample a small number, e.g. 12, of images from the training
set. For each sampled image X we produce heatmaps, Hy(X |C) ∈ R|U |, for each cluster, C,
that depict for each region u the average similarity of the region pattern φ y

u (X) to the patterns
in the corresponding cluster, i.e.

Hy
u(X |C) =

1
|C| ∑a∈C

〈φ y
u (X),a〉. (1)

Note that in practice we can compute this value without always summing over all patterns:
we pre-compute the average cluster pattern, aC = 1

|C| ∑a∈C a, and use Hy
u(X |C)= 〈φ y

u (X),aC〉.
We display the heatmaps and ask a human annotator to mark which of the clusters correspond
to the object class of interest in the images, see Figure 3 for an illustration of the process.
Overall, the annotation requires just one user interaction (a few mouse clicks) per class. Our
experience shows that each interaction takes in the order of a few seconds, so a few hundred
classes can be annotated within an hour.

(iv) Improved object class localization. The per-class annotations allow us to obtain better
location predictions without having to retrain the network. Let X be a new image with
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Figure 4: The effect of discarding localizations that correspond to a mid-level representation
(pattern) that is assigned to a cluster annotated as distractor.

predicted localization score map Sy
u(X). For each location u ∈ U we determine the cluster

that results in the highest heatmap score, C∗ = minC∈Py Hy
u(X |C). If C∗ was not annotated as

an ’object’ cluster, we set Sy
u(X) to −∞, in order to prevent that the class y will be predicted

at the location u.

4 Experiments

In this section we evaluate the effectiveness of our approach. We apply it to state-of-the-art
methods for predicting object bounding boxes and semantic segmentations from image-level
supervision and report experimental result on two challenging computer vision benchmarks:
ILSVRC 2014 and PASCAL VOC 2012.

Predicting object bounding boxes. We follow the protocol of the ILSVRC 2014 classifica-
tion-with-localization challenge: the goal is to predict which of 1000 object classes is present
in an image and localize it by predicting a bounding box [24]. By the challenge protocol, up
to five classes and their bounding boxes can be predicted, and the output is judged as correct
if a bounding box of the correct class is predicted with an intersection-over-union score of at
least 50% with a ground-truth box.

In this work we are particularly interested in the weakly-supervised setting, when mo-
dels are trained using only per-image category information. We build on the state-of-the art
technique GAP [43], which uses a deep convolutional network with modified VGG [27] ar-
chitecture. Internally, GAP produces localization score maps, Sy(X), by means of the CAM
(class activation maps) procedure, see [43] for details. GAP also includes a thresholding
function: given a score map for a class y, all locations that have a with a score larger than
20% of the maximum score are selected, i.e. Dy(X) = {u|Sy

u(X) > 0.2maxu∈U Sy
u(X)}. At

test time, for any input image five bounding boxes are produced, one for each class of the
set of top-5 classes predicted by the convolutional neural network. For each predicted class
the bounding box is produced, so that it covers the largest connected component of Dy(X)1

1Better results can be achieved by using a more involved method based on multiple image crops. This was used
for the results in [43], but is not described in the manuscript, so we use the simpler but reproducible setting.
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Figure 5: Examples of mid-level pattern clusters: torch has clusters that correspond to per-
son, torch and fire, and racket has clusters that correspond to player, court and racket.

Trained on the 1.2 million ILSVRC train images, this approach achieves an error rate of
49.9% on the ILSVRC val set.

Improving bounding box predictions. We use the proposed micro-annotation technique to
improve the CAM localization score maps. For computing mid-level feature representations
(patterns) we use the conv5_3 layer of the modified VGG network from [43]. This choice is
motivated by the closely related papers [26, 42] that studied object/part detectors emerging in
convolutional neural networks. We set ρ = 0.7 as clustering threshold parameter and predict
between 2 and 4 clusters. For the majority of classes (all except 56) we obtain only two
clusters.

Annotating all clusters for the 1000 classes requires less then 6 hours of annotator time.
In 182 semantic classes at least one cluster was identified as distractor, while for the remain-
ing classes different clusters typically correspond to different object parts. See Figure 5 for
a visualization of obtained object parts.

After modifying the localization scores according to our method we compute bounding
boxes for all val images. By construction, only the localization scores for 182 classes are
affected compared to the baseline GAP results. On average, the localization performance
improved by 4.9% for those classes, with individual improvements up to 38% (flatworm). In
Figure 6(a) we illustrate the results for the 79 classes for which localization score changed
by at least 5% compared to the baseline. We observed that for vast majority of classes our
method helps to improve localization performance. As expected, many of these are examples
where object and background consistently co-occur, for example speedboat (improved from
42% to 80%) or snowmobile (improved from 32% to 60%). For a few classes, we observed a
decrease of performance. We inspected these visually and observed a few possible reasons:
one possibility is that distractors are present in the image, but they actually help to find a
better bounding box: for example, drawing a bounding box around a complete person often
achieves above 50% intersection-over-union for predicting bath towels. A second possibility
is that objects consist of multiple visually disconnected parts, e.g. sandals. GAP’s large-
connected-component rule tends to fail for these, but by including distractors into the score
map, such as the foot, can accidentally overcome this issue. We believe that this insight will
be helpful for designing future weakly-supervised localization methods.

We additionally investigate the question whether the eigenvalues, which are produced by
spectral clustering, can be leveraged to automatically identify classes with distractors. For
this purpose we sort all 1000 classes by the second smallest eigenvalue given by spectral
clustering in increasing order and study how the cumulative improvement of localization
quality varies when micro-annotation is collected only for parts of the classes. Figure 6(b)
depicts the curve, with the fraction of annotated classes on the x-axis and the fraction of
localization improvement on the y-axis. One can see that the eigenvalues may be used to ef-
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Figure 6: (a) Improvement of the localization scores by applying micro-annotation technique
(for 79 classes with biggest changes); (b) Visualization of the trade off between the fraction
of annotated classes and the fraction of overall improvement.
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Figure 7: Typical mistakes (red boxes) of the baseline approach on ILSVRC val that
are corrected by our method (green boxes). In particular, we demonstrate the follow-
ing cases of foreground/background confusion: boat/water, muzzle/dog, riffle/soldier, aca-
demic gown/academic hat, dumbbell/sportsman, tennis racket/tennis player, horizontal
bar/gymnast, pick/guitar, reel/rod, bee/flower, oven/kitchen, soap dispenser/shell.

ficiently trade off annotation effort for localization performance. For example, it is sufficient
to annotate 15% of all classes to obtain 50% of overall localization improvement, or 50% of
the all classes for 85% of improvement.

Semantic image segmentation. Micro-annotation can also improve weakly-supervised se-
mantic image segmentation. We follow the protocol of the PASCAL VOC challenges [8]: the
goal is to produce segmentation masks by assigning one of 21 labels (20 semantic classes or
background) to each pixel of an image. The evaluation metric is the mean intersection-over-
union scores across all labels.

We are again interested in the weakly-supervised setting where models are trained only
from per-image class annotation. Following the common practice, we use the PASCAL
VOC2012 data with augmentation from [10]. In total, the training set (train) has 10,582
images. We report results on the validation part (val, 1449 images), and the test part (test,
1456 images). Because the ground truth annotations for the test set are not public, we rely
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Figure 8: Improvement of the intersection-over-union scores by applying micro-annotation.
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Figure 9: Examples of predicted segmentations masks without and with micro-annotation.

on the independent evaluation server2 to obtain numerical results for this data.
The state-of-the-art technique for weakly-supervised image segmentation from image

level labels is SEC [14]. Internally, it relies on CAM localization score maps, as introduced
in the previous section, also based on a modified VGG-16 network [27] (but with different
modifications), see [14] for details. In its original form, SEC achieves average intersection-
over-union scores of 50.7% (val) and 51.7% (test).

Improving semantic image segmentation. We obtain mid-level pattern clusters for the 20
semantic classes of PASCAL VOC following the protocol as in the previous section. Af-
ter annotating the clusters (which requires just a few minutes) we found two classes that
have significant distractors: boat and train. Thus, we apply our method for these classes
and retrain the SEC model using the improved localization score maps. The per-class nu-
merical evaluation for the val and test sets is presented in Figure 8. We observe significant
improvement of the intersection-over-union metric for the boat class (12.8% on val, 10.5%
on test) and for the train class (14.2% on val, 17.7% on test). The performance for the other
classes does not change significantly, only small perturbations occur due to the shared fea-
ture representation learned by the deep network. Overall, we achieve 52.2% and 53.0% mean
intersection-over-union for the val and test sets, and improvement of 1.5% and 1.3% percent
over the original SEC method. For a visual comparison of the segmentations predicted by
the baseline and our approach see Figure 9.

2http://host.robots.ox.ac.uk:8080/
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Reproducibility. We implemented the proposed method in python using the caffe [11]
deep learning framework. The trained models and code are publicly available 3.

5 Conclusion
Weakly-supervised localization techniques have the inherent problem of confusing objects
of interest with consistently co-occuring distractors. In this paper we present a micro-
annotation technique that substantially alleviates this problem. Our key insight is that objects
and distractors can be distinguished from each other because they form different clusters in
the distributed representation learned by a deep network. We derive an annotation technique
that requires only a few mouse clicks of user interaction per class and we propose an algo-
rithm for incorporating the acquired annotation into the localization procedure.

Experiments on the ILSVRC 2014 and PASCAL 2012 demonstrate that the proposed
micro-annotation method improves results further even for the state-of-the-art for weakly-
supervised object localization and image segmentation.
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under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreement no 308036. We gratefully acknowledge the support of NVIDIA Corporation with
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