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Abstract

The problem of computing category agnostic bounding box proposals is utilized as
a core component in many computer vision tasks and thus has lately attracted a lot of
attention. In this work we propose a new approach to tackle this problem that is based
on an active strategy for generating box proposals that starts from a set of seed boxes,
which are uniformly distributed on the image, and then progressively moves its attention
on the promising image areas where it is more likely to discover well localized bound-
ing box proposals. We call our approach AttractioNet and a core component of it is a
CNN-based category agnostic object location refinement module that is capable of yield-
ing accurate and robust bounding box predictions regardless of the object category. We
extensively evaluate our AttractioNet approach on the COCO 2014 validation set as well
as on the PASCAL VOC2007 test set, reporting for both of them state-of-the-art results
that surpass the previous work in the field by a significant margin. Finally, we provide
strong empirical evidence that our approach is capable to generalize to unseen categories.
Project page:: https://github.com/gidariss/AttractioNet.

1 Introduction

Category agnostic object proposal generation is a computer vision task that has received an
immense amount of attention over the last years. Its definition is that for a given image a
small set of instance segmentations or bounding boxes must be generated that will cover
with high recall all the objects that appear in the image regardless of their category. In object
detection, applying the recognition models to such a reduced set of category independent
location hypothesis [16] instead of an exhaustive scan of the entire image [11, 34], has the
advantages of drastically reducing the amount of recognition model evaluations and thus al-
lowing the use of more sophisticated machinery for that purpose. As a result, proposal based
detection systems manage to achieve state-of-the-art results and have become the dominant
paradigm in the object detection literature [3, 13, 14, 15, 16, 20, 33, 36, 40]. Object proposals
have also been used in various other tasks, such as weakly-supervised object detection [7],
exemplar 2D-3D detection [29], visual semantic role labelling [18], caption generation [23]
or visual question answering [35].

In this work we focus on the problem of generating bounding box object proposals rather
than instance segmentations. Several approaches have been proposed in the literature for
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this task [1, 2, 5, 6, 8, 19, 24, 25, 28, 38, 43]. Among them our work is most related to
the CNN-based objectness scoring approaches [12, 26, 32] that recently have demonstrated
state-of-the-art results [31, 32].

In the objectness scoring paradigm, a large set of image boxes is ranked according to
how likely it is for each image box to tightly enclose an object — regardless of its category
— and then this set is post-processed with a non-maximum-suppression step and truncated
to yield the final set of object proposals. In this context, Kuo et al. [26] with their Deep-
Box system demonstrated that training a convolutional neural network to perform the task
of objectness scoring can yield superior performance over previous methods that were based
on low level cues and they provided empirical evidence that it can generalize to unseen cat-
egories. In order to avoid evaluating the computationally expensive CNN-based objectness
scoring model on hundreds of thousands image boxes, which is necessary for achieving good
localization of all the objects in the image, they use it only to re-rank the proposals gener-
ated from a faster but less accurate proposal generator thus being limited by its localization
performance. Instead, more recent CNN-based approaches apply their models only to ten
of thousands image boxes, uniformly distributed in the image, and jointly with objectness
prediction they also infer the bounding box of the closest object to each input image box.
Specifically, the Region Proposal Network in Faster-RCNN [33] performs bounding box re-
gression for that purpose while the DeepMask method predicts the foreground mask of the
object centred in the image box and then it infers the location of the object’s bounding box
by extracting the box that tightly encloses the foreground pixels. The latter has demonstrated
state-of-the-art results and was recently extended with a top-down foreground mask refine-
ment mechanism that exploits the convolutional feature maps at multiple depths of a neural
network [31].

Our work is also based on the paradigm of having a CNN model that given an image box
it jointly predicts its objectness and a new bounding box that is better aligned on the object
that it contains. However, we opt to advance the previous state-of-the-art in box proposal
generation in two ways: (1) improving the object’s bounding box prediction step (2) actively
generating the set of image boxes that will be processed by the CNN model.

Regarding the bounding box inference step we exploit the recent advances in object
detection where Gidaris and Komodakis [14] showed how to improve the object-specific
localization accuracy. Specifically, they replaced the bounding box regression step with a
localization module, called LocNet, that given a search region it infers the bounding box of
the object inside the search region by assigning membership probabilities to each row and
each column of that region and they empirically proved that this localization task is easier to
be learned from a convolutional neural network thus yielding more accurate box predictions
during test time. Given the importance of having accurate bounding box locations in the
proposal generation task, we believe that it would be of great interest to develop and study a
category agnostic version of LocNet for this task.

Our second idea for improving the box proposal generation task stems from the following
observation. Recent state-of-the-art box proposal methods evaluate only a relatively small
set of image boxes (in the order of 10k) uniformly distributed in the image and rely on the
bounding box prediction step to fix the localization errors. However, depending on how
far an object is from the closest evaluated image box, both the objectness scoring and the
bounding box prediction for that object could be imperfect. For instance, Hosang et al. [21]
showed that in the case of the detection task the correct recognition of an object from an
image box is correlated with how well the box encloses the object. Given how similar are
the tasks of category-specific object detection and category-agnostic proposal generation, it
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is safe to assume that a similar behaviour will probably hold for the latter one as well. Hence,
in our work we opt for an active object localization scheme, which we call Attend Refine
Repeat algorithm, that starting from a set of seed boxes it progressively generates newer
boxes that are expected with higher probability to be on the neighbourhood or to tightly
enclose the objects of the image. Thanks to this localization scheme, our box proposal
system is capable to both correct initially imperfect bounding box predictions and to give
higher objectness score to candidate boxes that are more well localized on the objects of the
image. Note that active localization schemes have also been previously applied in the object
detection literature [4, 13, 14, 17, 30, 39, 42].

To summarize, our contributions with respect to the box proposal generation task are:
(1) We developed a box proposal system that is based on an improved category-agnostic
object location refinement module and on an active box proposal generation strategy that
behaves as an attention mechanism that focus on the promising image areas in order to
propose objects. We call the developed box proposal system AttractioNet: (Att)end (R)efine
Repeat: (Act)ive Box Proposal Generation via (I)n-(O)ut Localization (Net)work. (2) We
exhaustively evaluate our system both on PASCAL and on the more challenging COCO
datasets and we demonstrate significant improvement with respect to the state-ofthe-art on
box proposal generation. Furthermore, we provide strong evidence that our object location
refinement module is capable of generalizing to unseen categories.

The remainder of the paper is structured as follows: We describe our box proposal
methodology in section §2, we show experimental results in section §3 and we present our
conclusions in section §4.

2  Our approach

2.1 Active bounding box proposal generation

Algorithm: Attend Refine Repeat
Input : Image I
Output: Bounding box proposals P
C+0, B? « seed boxes

fort< 1toT do
/+ Attend & Refine procedure */

O’ « ObjectnessScoring(B'~1|I)
B’ « ObjectLocationRefinement(B'~!|I)
C+« CU{B,0}

end

P < NonMaxSuppression(C)

The active box proposal generation strategy that we employ in our work, which we call
Attend Refine Repeat algorithm, starts from a set of seed boxes, which only depend on the
image size, and it then sequentially produces newer boxes that will better cover the objects
of the image while avoiding the "objectless" image areas (see Figure 1). At the core of this
algorithm lies a CNN-based box proposal model that, given an image / and the coordinates
of a box B, executes the following operations:

Category agnostic object location refinement: this operation returns the coordinates of a
new box B that would be more tightly aligned on the object near B. In case there
are more than one objects in the neighbourhood of B then the new box B should be
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Figure 1: Tllustration of image areas that are being attended by our active proposal generation al-
gorithm as it progresses from the fist iteration (1st column) to the last one (5th column). Note that in
order to create the provided attention maps we collapsed the attended boxes of each iteration in a 2D
canvas. We observe that in the first iteration the box proposal generator attends the entire image since
the seed boxes are created by uniformly distributing boxes across the image. However, as the algorithm
progresses its attention is concentrated on the image areas that actually contain objects.

targeting the object closest to the input box B, where by closest we mean the object
that its bounding box has the highest intersection over union (IoU) overlap with the
input box B.

Category agnostic objectness scoring: this operation scores the box B based on how likely
it is to tightly enclose an object, regardless of its category.

The pseudo-code of the Attend Refine Repeat algorithm is provided in Algorithm 1. Specif-
ically, it starts by initializing the set of candidate boxes C to the empty set and then creates
a set of seed boxes B® by uniformly distributing boxes of various fixed sizes in the image
(similar to Cracking Bing [41]). Then on each iteration ¢ it estimates the objectness O of
the boxes generated in the previous iteration, B’ ~! and it refines their location (resulting
in boxes B') by attempting to predict the bounding boxes of the objects that are closest to
them. The results {B’,0'} of those operations are added to the candidates set C and the
algorithm continues. In the end, non-maximum-suppression [11] is applied to the candidate
box proposals C and the top K box proposals, set P, are returned.

The advantages of having an algorithm that sequentially generates new box locations
given the predictions of the previous stage are two-fold:

e Attention mechanism: First, it behaves as an attention mechanism that, on each iter-
ation, focuses more and more on the promising locations (in terms of box coordinates)
of the image (see Figure 1). As a result, boxes that tightly enclose the image objects
are more likely to be generated and to be scored with high objectness confidence.

e Robustness to initial boxes: Furthermore, it allows to refine some initially imperfect
box predictions or to localize objects that might be far (in terms of center location,
scale and/or aspect ratio) from any seed box in the image. This is illustrated via a
few characteristic examples in Figure 2. As shown in each of these examples, starting
from a seed box, the iterative bounding box predictions gradually converge to the
closest object without actually being affected from any nearby instances.
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Figure 2: Tllustration of the consecutive bounding box predictions made by our category agnostic lo-
cation refinement module as the active proposal generation algorithm progresses from the Oth iteration
(seed box; 1st column) to the last iteration (final box prediction; 6th column). Each row depicts a
different example. Despite the fact that the seed box might be quite far from the object (in terms of
center location, scale and/or aspect ratio) the refinement module has no problem in converging to the
bounding box closest to the seed box object. This capability is not affected even in the case that the
seed box contains also other instances of the same category as in rows 3 and 4.

2.2 CNN-based box proposal model

Here we describe in more detail the object localization and objectness scoring modules of
our box proposal model as well as the CNN architecture that implements it.

2.2.1 Object location refinement module

In order for our active box proposals generation strategy to be effective, it is very important
to have an accurate and robust category agnostic object location refinement module. Hence
we follow the paradigm of the recently introduced LocNet model [14] that has demonstrated
superior performance in the category specific object detection task over the typical bounding
box regression paradigm [13, 15, 33, 34] by formulating the problem of bounding box pre-
diction as a dense classification task. Here we use a properly adapted version of that model
for the task at hand.

At a high level, given as input a bounding box B, the location refinement module first
defines a search region R = yB (i.e., the region of B enlarged by a factor y) over which
it is going to next search for a new refined bounding box. To achieve this, it considers a
discretization of the search region R into M columns as well as M rows, and yields two
probability vectors, py={p.; ", and p, = {p,;}!,, for the M columns and the M rows
respectively of R, where these probabilities represent the likelihood of those elements (rows
or columns) to be inside the target box B* (these are also called in-out probabilities in the
original LocNet model). Each time the target box B* is defined to be the bounding box of
the object closest to the input box B. Finally, given those in-out probabilities, the object
location B inference is formulated as a simple maximum likelihood estimation problem that
maximizes the likelihood of the in-out elements of B. A visual illustration of the above
process through a few examples is provided in Fig. 3 (for further details about the LocNet
model we refer the interested reader to [14]).

We note that in contrast to the original LocNet model that is optimized to yield a different
set of probability vectors of each category in the training set, here our category-agnostic ver-
sion is designed to yield a single set of probability vectors that should accurately localize any
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Figure 3: Tllustration of the bounding box prediction process that is performed by our location refine-
ment module. In each case the red rectangle is the input box B, the blue rectangle is the predicted box
and the depicted image crops are the search regions where the refinement module "looks" in order to
localize the target object. On the bottom and on the right side of the image crop we visualize the p,
and py, probability vectors respectively that our location refinement module yields in order to localize
the target object. Ideally, those probabilities should be equal to 1 for the elements (columns/rows) that
overlap with the target box and O everywhere else.

object regardless of its category (see also section §2.2.3 that describes in detail the overall ar-
chitecture of our proposed model). It should be also mentioned that this is a more challenging
task to learn since, in this case, the model should be able to localize the target objects even
if they are in crowded scenes with other objects of the same appearance and/or texture (see
the two left-most examples of Figure 3) without exploiting any category supervision during
training that would help it to better capture the appearance characteristics of each object cate-
gory. On top of that, our model should be able to localize objects of unseen categories. In the
right-most example of Figure 3, we provide an indicative result produced by our model that
verifies this test case. In this particular example, we apply a category-agnostic refinement
module trained on PASCAL to an object whose category ("clock") was not present in the
training set and yet our trained model had no problem of confidently predicting the correct
location of the object. In section 3.2 of the paper we also provide quantitative results about
the generalization capabilities of the location refinement module.

2.2.2 Objectness scoring module

The functionality of the objectness scoring module is that it gets as input a box B and yields
two probabilities, p,p; and ppex = 1 — popj, of whether or not this box tightly encloses an
object, regardless of what the category of that object might be. The deep network architecture
used for computing p,y,; is presented in section 2.2.3.

2.2.3 AttractioNet architecture

We call the overall network architecture that implements the Atfend Refine Repeat algorithm
with its In-Out object location refinement module and its objectness scoring module, Attrac-
tioNet'. Given an image I, our AttractioNet model will be required to process multiple image
boxes of various sizes, by two different modules and repeat those processing steps for several
iterations of the Attend Refine Repeat algorithm. So, in order to have an efficient implemen-
tation we follow the SPP-Net [20] and Fast-RCNN [15] paradigm and share the operations
of the first convolutional layers between all the boxes, as well as across the two modules
and all the Attend Refine Repeat algorithm repetitions. Specifically, our AttractioNet model
first forwards the image I through a first sequence of convolutional layers (conv. layers of
VGG16-Net [37]) in order to extract convolutional feature maps F; from the entire image.

VAttractioNet : (Att)end (R)efine Repeat: (Act)ive Box Proposal Generation via ()n-(O)ut Localization
(Net)work
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Then, on each iteration ¢ the box-wise part of the architecture gets as input the image con-
volutional feature maps F; and a set of box locations B! and yields the refined bounding
box locations B’ and their objectness scores O’ using its object location refinement module
sub-network and its objectness scoring module sub-network respectively. The architecture
of its two sub-networks is described in more detail in the rest of this section:

Object location refinement module sub-network. This module gets as input the feature
map Fj and the search region R and yields the probability vectors p, and p, of that search
region with a network architecture similar to that of LocNet. Key elements of this architec-
ture is that it branches into two heads, the X and Y, each responsible for yielding the p, or
the py outputs. Differently from the original LocNet architecture, the convolutional layers of
this sub-network output 128 feature channels instead of 512, which speeds up the processing
by a factor of 4 without affecting the category-agnostic localization accuracy. Also, in order
to yield a fixed size feature for the R region, instead of region adaptive max-pooling this
sub-network uses region bilinear pooling [9, 22] that in our initial experiments gave slightly
better results. Finally, our version is designed to yield two probability vectors of size M?,
instead of C x 2 vectors of size M (where C is the number of categories), since in our case
we aim for category-agnostic object location refinement.

Objectness scoring module sub-network. Given the image feature maps F; and the
window B it first performs region adaptive max pooling of the features inside B that yields a
fixed size feature (7 x 7 x 512). Then it forwards this feature through two linear+ReL.U hid-
den layers of 4096 channels each (fc_6 and fc_7 layers of VGG16) and a final linear+softmax
layer that yields two probabilities, p,p; and ppex = 1 — pgpj, of whether or not box B tightly
encloses an object. The fc_6 and fc_7 layers are followed by dropout units with dropout
probability p =0.5.

2.3 Training procedure

Training loss: During training the following multi-task loss is optimized:

1N 1 ¥
NL ZLZOC(G‘BkaTkvlk)+]W Y Lovj(01Bisyis Ii) (1)
k=1 k=1
localizatig task loss objectness S(;)rring task loss

where 0 are the learnable network parameters, {By, Tk,Ik}i\i | are N training triplets for

learning the localization task and {By, yk,Ik}ﬁ:’:Ol are N© training triplets for learning the
objectness scoring task. Each training triple {B,T,I} of the localization task includes the
image I, the box B and the target localization probability vectors 7' = {T,T,}. If (B},B;)
and (Bj,Bj) are the top-left and bottom-right coordinates of the target box B* then the target
probability vectors Ty ={T;;}}2, and T, ={T;;}*, are defined as:

1, if By <i<B} 1, if Bf <i<Bj
Z . — ) l r Jp— 9 t b .
o {O, otherwise and 7y, {O, otherwise Viedl.. M} (2)

The loss L;,.(6|B,T,I) of this triplet is the sum of binary logistic regression losses:

1

M
o Z Z Ty ilog(pai) + (1 —T,:)1log(1 — pai), 3)

ac{xy}i=1

2Here we use M = 56.
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where p, are the output probability vectors of the localization module for the image I and
box B. The training triplet {B,y,} for the objectness scoring task includes the image 7, the
box B and the target value y € {0, 1} of whether the box B contains an object (positive triplet
with y = 1) or not (negative triplet with y = 0). The loss L,,;(6|B,y,I) of this triplet is the
binary logistic regression loss ylog(popj) + (1 —y)log(ppek), where pop; and pye are the
objectness probabilities for the image / and box B.

Creating training triplets: In order to create the localization and objectness training
triplets of one image we first artificially create a pool of boxes that our iterative algorithm
is likely to attend during test time. Hence we start by generating seed boxes (as the test
time algorithm) and for each of them we predict the bounding boxes of the ground truth
objects that are closest to them using an ideal object location refinement module. This step
is repeated one more time using the previous ideal predictions as input. Because of the finite
search area of the search region R the predicted boxes will not necessarily coincide with
the ground truth bounding boxes. Furthermore, to account for prediction errors during test
time, we repeat the above process by jittering this time the output probability vectors of the
ideal location refinement module with 20% noise. Finally, we merge all the generated boxes
(starting from the seed ones) to a single pool. Given this pool, the positive training boxes
in the objectness localization task are those that their JoU with any ground truth object is at
least 0.5 and the negative training boxes are those that their maximum /oU with any ground
truth object is less than 0.4. For the localization task we use as training boxes those that their
IoU with any ground truth object is at least 0.5.

Optimization: We use stochastic gradient descent (SGD) optimization with an image-
centric strategy for sampling training triplets. Specifically, in each mini-batch we first sample
4 images and then for each image we sample 64 training triplets for the objectness scoring
task (50% are positive and 50% are negative) and 32 training triplets for the localization task.
The momentum is set to 0.9 and the learning schedule includes training for 320k iterations
with a learning rate of /, = 0.001 and then for another 260k iterations with /, = 0.0001.

Scale and aspect ratio jittering: During test time our model is fed with a single image
scaled such that its shortest dimension to be 1000 pixels or its longest dimension to not
exceed the 1400 pixels. However, during training each image is randomly resized such
that its shortest dimension to be one of the following number of pixels {300 :50: 1000}
(using Matlab notation) taking care, however, the longest dimension to not exceed 1000
pixels. Also, with probability 0.5 we jitter the aspect ratio of the image by altering the
image dimensions from W x H to (W) x H or W x (ocH ) where the value of ¢ is uniformly
sampled from 2-%°%1-0 (Matlab notation).

3 Experimental results

In this section we perform an exhaustive evaluation of our box proposal generation approach
that we call AttractioNet. For that purpose, we train our model on the training set of MS
COCO [27] that includes 80k images and we test it on the first Sk images of the COCO
validation set and the PASCAL [10] VOC2007 test set (that also includes around 5k images).

Evaluation Metrics: As evaluation metric we use the average recall (AR) which, for a
fixed number of box proposals, averages the recall of the localized ground truth objects for
several Intersection over Union (IoU) thresholds in the range .5:.05:.95 (Matlab notation).
Specifically, we report the AR results for 10, 100 and 1000 box proposals using the notation
AR@]0, AR@]00 and AR@ 1000 respectively. Also, in the case of 100 box proposals we
also report the AR of the small (@ < 32?), medium (32% < o < 96?) and large (o > 962)
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Method AR@10 AR@100 AR@1000 AR@100-Small ~AR@100-Medium  AR@100-Large
EdgeBoxes [43] 0.074 0.178 0.338 0.015 0.134 0.502
Geodesic [24] 0.040 0.180 0.359 - - -
Selective Search [38] 0.052 0.163 0.357 0.012 0.0132 0.466
MCG [2] 0.101 0.246 0.398 0.008 0.119 0.530
DeepMask [32] 0.153 0.313 0.446 - -
DeepMaskZoom [32] 0.150 0.326 0.482 - - -
Co-Obj [19] 0.189 0.366 0.492 0.107 0.449 0.686
SharpMask [31] 0.192 0.362 0.483 0.060 0.510 0.665
SharpMaskZoom [31] 0.192 0.390 0.532 0.149 0.507 0.630
SharpMaskZoom? [31] 0.178 0.391 0.555 0.221 0.454 0.588
AttractioNet (Ours) 0.328 0.535 0.661 0.319 0.625 0.773
AttractioNet-PASCAL (Ours) 0.245 0.403 0.528 0.183 0.462 0.693
Table 1: Average Recall results on the first 5k images of COCO validation set.
Method AR@10 AR@I00 AR@I1000 AR@I100-Small AR@100-Medium  AR@100-Large
EdgeBoxes [43] 0.203 0.407 0.601 0.035 0.159 0.559
Geodesic [24] 0.121 0.364 0.596 - - -
Selective Search [38] 0.085 0.347 0.618 0.017 0.134 0.364
MCG [2] 0.232 0.462 0.634 0.073 0.228 0.618
DeepMask [32] 0.337 0.561 0.690 - - -
Best of Co-Obj [19] 0.430 0.602 0.745 0.453 0.517 0.654
AttractioNet (Ours) 0.554 0.741 0.851 0.562 0.670 0.788

Table 2: Average Recall results on the PASCAL VOC2007 test set.

0.
03 —AR@10

AR@100
—— AR@100-Large
0.1 —— AR@100-Medium
AR@100-Small
0 —— AR@1000

0.1 R@100-Small S
——R@1000 ——R@1000

05 055 06 065 07 075 08 08 09 095 I 05 055 06 065 07 075 08 08 09 095 1 0 1 2 3 4
ToU overlap threshold ToU overlap threshold Number of Repetions

(a) COCO validation set (b) VOC2007 test set (¢) COCO validation set
Figure 4: (a)-(b) Recall versus IoU plots of our approach for: 10 proposals (R@ 0), 100 proposals
(R@100), 1000 proposals (R@ 1000), 100 proposals and small sized objects (R@ /00-Small), 100 pro-
posals and medium sized objects (R@ /00-Medium) and 100 proposals and large sized objects (R@ 100-
Large). (¢) Average recall versus the repetitions number of the active proposal generation algorithm.

sized objects using the notation AR@ /00-Small, AR@ 100-Medium and AR@ 100-Large re-
spectively, where « is the area of the object.

Implementation details: In the active box proposal algorithm we use 10k seed boxes
generated with a similar to Cracking Bing [41] technique®. To reduce the computational
cost of our algorithm, after the first repetition we only keep the top 2k scored boxes and
we continue with this number of candidate box proposals for four more iterations. In the
non-maximum-suppression [11] (NMS) step the optimal IoU threshold that is being used
depends on the desired number of box-proposals. Specifically, for 10, 100 and 1000 propos-
als we use an IoU threshold of 0.55, 0.75 and 0.90 respectively (note that the aforementioned
IoU thresholds were cross validated on a set different from the one used for evaluation).

3.1 Object box proposal generation evaluation

In Table | we report the average recall (AR) metrics of our method as well as of other com-
peting methods in the COCO validation set. We observe that the average recall performance
achieved by our method exceeds all the previous work in all the AR metrics by a significant
margin (around 10 absolute points in the percentage scale). Similar gains are also observed
in Table 2 where we report results in the VOC2007 test set. Furthermore, the first two plots

3We use seed boxes of 3 aspect ratios, 1 :2, 2:1 and 1 : 1, and 9 different sizes of the smallest seed box
dimension {16,32,50,72,96,128,192,256,384}.
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(plots (a) and (b)) of Figure 4 present in the case of our method the recall as a function of the
IoU overlap of the ground truth objects. We see that the recall decreases relatively slowly as
we increase the IoU from 0.5 to 0.75 while for IoU above 0.85 the decrease is faster.

In plot (c) of Figure 4 we provide the average recall metrics as a function of the repe-
titions number of our approach. We observe that the steepest increase in the AR metrics is
when going from O repetitions (only objectness scoring of the seed boxes is performed) to
1 repetition (both objectness scoring and location refinement of the seed boxes). It is worth
noting that after the 1st repetition, the AR performance of our approach is already better
than the previous state-of-the-art (as reported in Table 1), which demonstrates the very good
localization accuracy of our object location refinement module. Further increasing the rep-
etitions number leads to an even higher AR performance, fact that validates our active box
proposal generation strategy. Finally, it seems that the AR measurements start converging
after the 4th repetition.

3.2 Generalization to unseen categories

In the final entry (AftractioNet-PASCAL) of Table 1 we report the average recall results on
COCO validation set when our model is trained on PASCAL VOCO07+12 train+val sets.
The purpose of this experiment is to examine the ability of our approach to generalize to
"unseen" categories since the 20 categories of the PASCAL dataset is only a small subset
of the 80 categories of the COCO dataset). We observe that the average recall results of
the AttractioNet-PASCAL entry are relatively close to those of the AttractioNet entry that
1s trained on the COCO training set. Given the fact that the AttractioNet-PASCAL entry is
trained only on 16k images instead of 80k images as the AttractioNet entry, the performance
difference between them is relatively small. By examining the AR metrics for the small,
medium and large sized objects we observe that the main drop in performance is for the
small and medium sized objects which we speculate is due to the fact that the COCO dataset
mainly includes small and medium sized objects while the the PASCAL dataset is more
biased towards the large sized objects. Furthermore, the AttractioNet-PASCAL entry is still
better than the rest methods in Table 1 and especially for the AR@ /0, AR@ 00 and AR@ ] 00-
Large metrics it surpasses even the SharpMask entries that are the previous state-of-the-art in
the field and are trained in the COCO training set. To conclude, we argue that the results of
the ArtractioNet-PASCAL entry prove experimentally the capability of our category agnostic
location refinement model to generalize to "unseen" categories.

4 Conclusions

In our work we propose a bounding box proposals generation method, which we call Az-
tractioNet, whose key elements are a strategy for actively searching of bounding boxes in
the promising image areas and a powerful object location refinement module that extends
the recently introduced LocNet [14] model on localizing objects agnostic to their category.
We extensively evaluate our method on the challenging MS COCO and PASCAL datasets,
demonstrating in both cases average recall results that surpass the previous state-of-the-art by
a significant margin while also providing strong empirical evidence about the generalization
ability of our approach w.r.t. unseen categories.
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