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Abstract

The goal of image super-resolution is to recover missing high frequency details of an
image given single or multiple low-resolution images. It is a well-known ill-posed prob-
lem and requires mature prior knowledges or enough examples to restore high-quality
high-resolution images. Recently, many methods formulate image super-resolution as
a regression problem. Input image patches are classified into pre-trained clusters, and
cluster-dependent mapping functions are employed to super-resolve input patches. In this
paper, for further improving the reconstructed image quality, an optimized regressor for-
est framework is proposed, which leverages the discriminative power of random forest.
There are three major contributions of the proposed framework. (i) The proposed scheme
overturns existing approaches by training the regressors first and learning the way to find
the best regressor to avoid quality degradation introduced from the classification outliers.
(i1) We propose to employ EM-algorithm to optimize regressors by jointly optimizing the
clustering results as well as the regression functions. (iii) In order to find the most ap-
propriate regressor for an input patch at the testing stage, random forest is adopted to
accurately classify patches into their best clusters (regressors). The experimental results
demonstrate that the proposed method generates high-quality high-resolution images and
yields state-of-the-art results.

1 Introduction

Single-image super-resolution (SR) aims at recovering a high resolution (HR) image from a
single low resolution (LR) input image. It is a well-known ill-posed problem that has been
studied over decades and is still an open problem. Recent mainstream approaches [17, 19]
of single-image super-resolution formulate the problem as a data representation learning and
regression problem. These methods decompose the input image into patches. These patches
are then classified into pre-learned clusters. For each cluster, a linear regressor is pre-trained
to transform the input LR patches of this cluster into HR patches. Though it usually takes
long time to learn good clustering and regression functions from a large-scale image set at
the training stage, at testing stage, the search space (i.e. the number of clusters) is orders of
magnitude smaller compared to early neighbor embedding [1, 3] or internal example-based
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Figure 1: An overview of the proposed Optimized Regressor Forest framework for super-
resolution.

SR methods [7, 8, 15]. As aresult, the computation of the classification-regression scheme at
the testing stage is merely to classify the input patches and to compute the cluster-dependent
regression. This kind of classification-regression algorithms achieves current state-of-the-art
in single image super-resolution in terms of accuracy and efficiency.

The key towards high quality and efficient image super-resolution turns to answering the
following questions:

(1) How to classify image patches such that patches in the same cluster can be accurately
super-resolved using the same regressor?

(i1) How to learn the best regression function such that the super-resolved HR patches have
highest numerical accuracy?

Many classification approaches [9, 13, 14, 16, 17, 18, 19, 24] have been explored to
tackle the first item and the regression function is learned from the classified patches in the
same cluster. The classification following the regression training scheme has a potential
problem that the regression step minimizes the error within a cluster. While there might be
outliers in the classification process, the learned regression function may not be the optimal
for all patches.

In this paper, we tackle the problem in a reverse manner. We put the regressor at the
first place. We propose to learn a set of regression functions from training samples using the
EM-algorithm. These regressors are learned to minimize overall reconstruction distortion
(e.g. peak signal to noise ratio(PSNR) or structure similarity(SSIM)) for all training data.
After that, we will obtain a set of patch-regressor pairs. We then train a random forest from
these patch-regressor pairs to predict the best regressors for input patches. We call it the
Optimized Regressor Forest for super-resolution. An overview of the proposed framework
1s illustrated in Fig. 1. Our experimental results show that the proposed method is able to
achieve comparable or better results in numerical evaluation or visual comparison.

The rest of this paper is organized as follows. Section 2 reviews related works close to
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the prosed method. We introduce the proposed framework in Section 3. We show our results
and compare with the state-of-the-art approaches in Section 4. Finally, Section 5 concludes
this paper.

2 Related Works

The well known bicubic interpolation [ 10] can be regarded as a special case of the classification-
regression scheme where all patches belong to the same cluster and the corresponding re-
gression function is the bicubic kernel. Typically, it has acceptable results in smooth regions
while it usually fails to handle edges and textures. The general image-level mapping from a
LR image to a HR image is highly complicated such that using only the bicubic kernel can
not fully handle all kinds of patches.

The neighbor embedding (NE) approaches [1, 3] are also the milestone of the advances
in super-resolution. The input LR patches are approximated by a linear combination of their
nearest neighbors in the external dataset. The same combination coefficients are used to fuse
the corresponding HR patches in the dataset to predict the HR output patches. Typically,
it requires a huge dataset (millions of patches) to achieve decent HR prediction. This also
dramatically increases the processing time. Instead of using the patches directly extracted
from natural images, Yang et al. [22] employed sparse coding to represent the huge image
dataset efficiently. Specifically, they jointly learned the compact LR and HR dictionaries
with a sparsity constraint using the following sparse representation:

Dy, Dy = argmin || X, — Dyatl|3 + || X; — Dyar[|3 + A [l e[|y (1)
Dp,Dy
where LR patches are denoted by X; and their corresponding HR patches are denoted by Xj,.
Dy, and D; are the HR and LR dictionary respectively. o represents the sparse coefficient for
both LR and HR patches. At testing stage, the algorithm searches for a sparse representation
of each input patch (y;) as a combination of dictionary atoms:

& = argmin ||y, — Do) 3 + A ||t - 2)
o

Then the output HR patch is obtained from Dy, which is a linear combination of the HR
dictionary using the same coefficient. The ideal regularization term of sparse constraint
is l[p—norm, which leads to an NP-hard problem. Alternatively, Yang et al. relaxed it to
li—-norm for feasibility. Zeyde et al. [23], build on this work and reach significant improve-
ments both in speed and output quality by using K-SVD [12] to approximate the /p—norm.

The neighbor embedding approaches may be still computationally expensive due to the
optimization of Eq. 2 at testing time. Timofte ef al. proposed the anchored neighborhood
regression (ANR) [16] that relaxes the sparse decomposition optimization of [22, 23] to a
ridge regression which can be solved offline and stored at each dictionary atom (anchor).
The offline learning scheme enables large speed-up at testing time. Timofte et al. further
extended the ANR approach to the A+ approach [17, 18]. They learned the regressors from
all the training patches in the local neighborhood of the anchoring atoms instead of only
from the anchoring atoms as ANR does. Formally, the K-nearest neighbors of each LR
dictionary atom (d;) in LR-HR training patch pairs (V;,N,,) are collected, then the following
ridge regression is computed for each atom.

3=arg;ninud,-—NzBH%+7t 1Bl 3)
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This ridge regression has a close-form solution: 8 = (N/N;+ AI)"'N. The projection
matrix can be precomputed as a mapping function for an input patch y;:

Y = fi(n) = Pjy = No (NI Ny + A1) 7' N[ y;. 4)

The yj, is the super-resolved result, and f; is the stored mapping function of the atom having
the highest correlation to the input patch y;. The testing time operations of the A+ approach
then becomes the nearest-neighbor search followed by a matrix multiplication for each input
patch. The ANR and A+ approaches can be understood by the aforementioned classification-
regression scheme where they classify patches by finding the nearest neighbors in a set of
atoms (anchors) and use the stored regressors to super-resolve input patches.

Some recent SR approaches also explore the same classification-regression scheme with
different classification methods. To name a few, Yang et al. [19] used K-means clustering
to harvest a set of representative patches from natural images and simple affine transform
is used as the cluster-dependent regressors for each cluster. Schulter er al. [14] adopted the
random forest as the classifier and the regressors are learned from the patches in the same
leaf node. With the same number of regressors, these methods can perform on par with the
A+ method in accuracy.

Note that all above classification-regression methods suffer from a potential problem that
the regressors are trained to minimize the prediction error within a cluster. The regression
error of each cluster is minimized but the overall regression error for all training data is
not guaranteed since the regression might be affected by classification outliers. To address
this problem, Dai et al. [5] proposed to jointly learn a collection of regressors which yield
the smallest super-resolving error for all training data. After learning the best regressors, a
collection of patch-regressor pairs serves as the transform recipes in testing stage. During
testing, the algorithm finds the nearest neighbor for an input patch in the collection of training
patches and uses the matched patch’s best regressor for testing. Due to large size of the
search space, Dai et al. proposed to use KD-tree to approximate the nearest-neighbor search,
which also degrades the accuracy of their method. As reported by [14], the performance of
[5] is slightly worse than the A+ method.

We also tackle the problem by first learning the optimal regressors for all training patches
such that these regressors yield the minimal error in LR to HR mapping. Then we leverage
the discriminative power of random forest to learn the prediction of best regressors from
input patches. Different from [14], we use the random forest to predict the pre-learned re-
gressors while [14] employs random forest to classify patches and then learns the regressors
with the classified patches.The experimental results show that the proposed framework is
more effective to predict the best regressors that yields smaller super-resolving error com-
pared to the A+ method.

3 Proposed Algorithm

In this section, we present the proposed Optimized Regressor Forest (ORF) for super-resolution
in detail, including (1) EM-algorithm for best regressor learning and (ii) random forest pre-
diction. An overview of our algorithm is shown in Fig. 1.

3.1 EM-algorithm for best regressor learning
Given the number of regressors, K, we start from the regressors obtained by the A+ algo-

rithm [17]. We aim at learning the best regressors for all training patches. Specifically, an
objective function associating with the overall super-resolving error for all training patches
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1s introduced:

A A A 2 K
S, fi.. —argmanZsl]H l,fj f))’z,s.t.Vi:Zsi,jzl,siij{O,l} (5)

S, f1---Jk i=1 j= j=1

Here, N is the number of training patches, xf and xf.’ represent the i-th LR and HR patches
in the training set X; and Xj,. f; denotes the j-th regressor. e(p,q) is a metric measuring
the appearance similarity of two patches p and g (e.g. MSE or variance). S € RV*K is an
indicator matrix. Its element s;; € {0, 1} indicates whether the i-th training data has minimal
error with the j-th regressor. There is only one s;; being assigned 1 for each i (the one
indicating the best regressor).

Note that minimizing Eq. 5 not only pairs the optimal regressors to all training data but
also adjusts the regressors to reduce the overall error. This minimization is a chicken-egg
problem. We tackle it by an EM-algorithm like strategy.

s sub-problem:

Firstly, we consider the problem to find the best regressors given a fixed set of regressors
f1...fk. This problem can be solved by trial-and-error through all K regressors for each
training patch. The one with minimal super-resolving error is assigned to the input patch.
This step is equivalent to the M-step of the EM algorithm, which maximizes the posterior
probability.

f sub-problem:

After obtaining the indicator matrix S, we consider another problem that § is fixed and the re-
gressors are updated to minimize Eq. 5. Let C § and Cj-l be the gathered training patches which
assign the j-th regressor as their best regressor by S. Then the following ridge regression is
used to update the K regressors.

P =cli(cl ci+an'cl’. (©)

This is analogous to the E-step of EM algorithm, that expects the maximum of the posterior
probability.

To minimize Eq. 5, we iteratively solve the above two sub-problems. The learning algo-
rithm is detailed in Algorithm 1. We found that 5 iterations are sufficient to achieve decent
accuracy.

3.2 Random Forest Reformulation

After minimizing Eq. 5, we have obtained the LR training samples and the updated optimal
regressors. Each training sample has been associated with a label indicating its best regres-
sor, the one yielding the smallest super-resolving error. We aim to pick the most appropriate
regressor for an input patch at the testing stage. Based on the assumption that similar patches
can be super-resolved by the same regressor, we formulate the super-resolution as a multi-
lable classification problem and train a random forest [2, 4] to predict the best regressors for
the input LR patches.

A random forest is an ensemble of decision trees. Each tree consists of split nodes and
terminal nodes (leaf nodes). At testing stage, a testing data y (in our case, a LR patch)
is passed into the root node. At each split node m, a split function Split(y, 6,,) is evaluated.
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Algorithm 1 EM-algorithm for best regression function training

Input: {xf,xf.’ }f\i |+ training LR-HR patch pairs, 7: number of iterations

Input: K: number of regressors, e(): similarity metric
Output: S = {s;;} € RV*K: indicators of best regressors
Output: f;...fx: K best regressors

1: Initialize fi ... fx by the A+ algorithm [17]

2: error matrix O = (0;;) € RVN*K

3: for iterationz =1:7 do

4: 0ij = e(x!, fi(xl)) > Solving the s sub-problem
5 s 1, o0ij<oip, Yp#]j,

J 0, others ’
6: for j=1:Kdo > Solving the f sub-problem
7: Gather patch pairs Ct, C? from X;, X;, using S
8: fi= Cﬁf (Cﬁ-TC§ + 7LI)_1C§-T > Ridge regression in Eq. 6
9: end for
10: end for

This is a binary decision based on some pre-defined features of the input data by thresholding
with a learned parameter 6,,. Depending on the decision, the data is passed to the left or right
child until a leaf node is reached. At a leaf node, the output is a stored histogram over class
labels (in our case, the probability distribution for all regressors).

Each tree in the forest is trained independently. A set of sample LR patches and their
corresponding HR patches are provided. We adopted bootstrap aggregation (Bagging) strat-
egy to randomize the training data for each tree. In other words, the training data of each tree
is a subset of all training samples, and the probability distribution of all labels (regressors)
predicted by each tree is aggregated. The one with the highest aggregated probability will
be used as the final regressor. Typically, the more decision trees in the random forest, the
overall performance is more stable and accurate.

In our case, the split function is based on thresholding the patch features. We adopt the
same patch features as [16, 17, 23]. The features are computed from the first and second
order gradients and PCA dimensionality reduction. To learn the parameter 6,, for each split
node, we start from the root node, a set of candidate parameters 6 are proposed at random.
For each candidate, the training set is partitioned into left and right child sets and the follow-
ing objective function (the typical information gain for classification problem) is evaluated:

A

0 = argmin Ny - 6(D) + Ng - 6(Dg), (7)
0

where o(.) denotes the Gini impurity for typical classification framework. Dy and Dg rep-
resent the labels of data in L and R respectively. Ny and Ng are the number of samples in the
left and right child sets. The typical impurity function (.) can be expressed as:

K
o(f) =) hj(1—hy), (8)
=1

where K is the number of labels, and #; is the percentage of the data with jth label inn
the same child set. After evaluating all candidates, the best parameter respect to Eq. 7 is
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chosen as the threshold in the split node. As o(.) of a child node is smaller than a user-
specified threshold € or the maximum tree depth is reached, a leaf node is created and the
label probability distribution is stored in the leaf node.

In order to reduce the maximum tree depth and maintain the same quality, we reformu-
late the impurity function o (.) for finding the best threshold. For our regression framework,
sometimes the second or third best regressor still provides pleasing result. Instead of impu-
rity, we use the accumulated reconstruction error as follows:

K

N
o(f) =Y Y hje(x, f(x), 9)
i=1j

=1

where e(.) and f; are with the same definition in Eq. 5, and x and x” are the samples in child
node.

3.3 Testing stage

At the testing stage, the input image is up-scaled by bicubic interpolation first. The bicubic
interpolated image is a coarse estimation. We then decompose this image into overlapping
patches and compute LR patch features for each patch. As mentioned earlier, we adopt the
same LR features as [16, 17, 23]. Next, each LR patch is passed into the random forest.
There are two ways to determine the regressor for each input LR patch from the probability
distribution of regressors stored at leaf nodes. The first way is to select the best regressor
with the highest probability. The other way is to aggregate the HR patches obtained by the
regressors at each leaf node. Among these two approaches, the latter gives better quality
since it can derive the expected value of the reconstructed HR patch.

4 Experimental Result

In this section, we evaluate the performance of the proposed ORF framework for image
super-resolution and give the numerical evaluation of the proposed framework.

We use the 91 training images as proposed by Yang et al. [21]. We work only on the
luminance component in YCbCr color space, and the chroma components are bicubically
interpolated as previous works do. Gaussian kernel is employed to remove high frequency
details from HR images, which are then sub-sampled to obtain LR images. The degrada-
tion operators are different from bicubic down-sample, since these operators are close to
camera model. The results of compared methods would also be slightly difference from
original papers. The testing sets contain the standard super-resolution benchmarks Set 5,
Set14 and 100 images from Berkeley Segmentation Dataset (BSD) [11]. The testing im-
ages are also blurred by Gaussian kernel and sub-sampled. We treat this testing as non-blind
super-resolution [20], that is, the Gaussian kernel used for training and testing images are
the same.

4.1 Patch features

The type of features used to represent image patches is an important factor that can influence
the performance. A popularly used and robust feature is the first and second order derivatives
of the patch [3, 23]. We adopt the same feature as those of [16, 17, 23], which start from the
first and second order gradients and apply PCA to reduce dimensionality. This patch feature
is used in regressor learning as well as the splitting criteria learning in the random forest.
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Table 1: Results of the proposed method compared with state-of-the-art works on 3 datasets

using three different magnification factors.

Bicubic Zeyde NE+NNLS NE+LLE
dataset factor =~ PSNR/SSIM/Time(s) PSNR/SSIM/Time(s) PSNR/SSIM/Time(s) PSNR/SSIM/Time(s)
Set5 x2 27.74/0.85981/0.0000  30.37/0.91211/0.4552  31.25/0.92625/14.1358  31.47/0.92922/1.7616
x3 27.22/0.84375/0.0000  29.06/0.88643/0.3258  29.11/0.88879/7.2368 29.55/0.89833/0.9024
x4 26.44/0.81578/0.0000  27.59/0.84799/0.2506  27.59/0.84943/3.4766  27.83/0.85626/0.6107
Setl4 x2 25.43/0.76590/0.0000  27.33/0.83483/0.9740  28.09/0.86155/28.7368  28.26/0.86633/3.7238
x3 24.99/0.74413/0.0000  26.28/0.79760/0.6049  26.28/0.80140/14.3354  26.66/0.83450/1.7791
x4 24.34/0.71115/0.0000  25.10/0.74842/0.4822  25.09/0.74999/6.6289  25.25/0.76065/1.1338
B100 x2 25.26/0.73056/0.0000  26.58/0.79912/0.7033  27.23/0.83012/19.3014  27.34/0.83462/2.4847
x3 24.88/0.70749/0.0000  25.74/0.75960/0.4179  26.00/0.77730/9.4292  26.08/0.78310/1.2700
x4 24.33/0.67400/0.0000  24.82/0.71083/0.3852  24.82/0.71281/4.9159  24.95/0.72493/0.8543
ANR A+ ORF-PSNR ORF-SSIM
dataset factor PSNR /SSIM /Time(s) PSNR/SSIM/Time(s) PSNR /SSIM/Time(s) PSNR/SSIM/Time(s)
Set5 x2 31.40/0.92814/0.3839  32.50/0.94068/0.3839  32.95/0.94347/0.6556  32.88/0.94416/0.6432
X3 29.60/0.89878/0.2649  30.54/0.91561/0.2649  30.83/0.92034/0.4079  30.81/0.92033/0.4125
x4 27.87/0.85727/0.2294  28.51/0.87519/0.2294  28.64/0.87840/0.3633 28.62/0.87846/0.3585
Set14 x2 28.20/0.86424/0.8479  28.83/0.86984/0.8479  29.28/0.87895/1.3888 29.22/0.87965/1.4012
x3 26.70/0.81760/0.5153  27.38/0.83751/0.5153 27.63/0.83162/0.7898  27.62/0.83783/0.7632
x4 25.28/0.76162/0.4370  25.72/0.75975/0.4370  25.88/0.77700/0.6856  25.88/0.77709/0.6901
B100 x2 27.29/0.83240/0.5937  27.83/0.84123/0.5937  28.18/0.85161/0.9627  28.19/0.85225/0.9523
x3 26.09/0.78310/0.3597  26.56/0.79799/0.3597  26.74/0.80283/0.5550  26.74/0.80300/0.5732
x4 24.96/0.72587/0.3517  25.22/0.72005/0.3517  25.34/0.73653/0.5357  25.34/0.73671/0.5052
269
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26.6 26.72
g 26.5 "é 26.7
264 26.68
26.3 A+
e ORE 26.66
26.64
261 0 10 20 30 40 50
2 4 8 16 32 64 128 256 512 1024 Depth of tree

# REGRESSORS

(a) PSNR to number of regressors

Figure 2: PSNR analysis on B100 with factor x3.

(b) PSNR to depth of 15 trees

4.2 Compared methods

We compare the proposed ORF framework with six classical or state-of-the-art methods'.
They are bicubic interpolation [10], neighbor embedding with locally linear embedding
(NE+LLE) [3], neighbor embedding with non-negative least squares (NE+NNLS) [1], sparse
representation SR (Zeyde) [23], anchored neighborhood regression (ANR) [16] and A+ [17].
To fairly compare these methods, all of them including ours use the same patch features. For
learning based methods, the training set is the same as [21] and the number of regressors is
fixed to 128 in our experiments. The furthermore analysis of the number of regressors could
be found in Fig. 2(a)

We set the number of trees in the random forest as 15, and the maximum depth of each
tree is 30. Although using more trees and allowing deeper tree depths gives more accurate
results, the parameters are set to prevent over-fitting. See the detail analysis in Fig. 2(b). We

'We use the MATLAB code provided by Timofte et al. [17]. All the compared methods are included in http:
//www.vision.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html
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(e) Zeyde (f) ANR (g) A+ (h) Our ORF-PSNR
Figure 3: Baby image from Set5 dataset with upscaling 4x. The results show ours and A+
have more details, but A+ has slightly ringing effects.

have tried two versions of ¢(.) in Eq. 5. One is the MSE metric, which is called as ORF-
PSNR since it minimizes Eq. 5 to maximize PSNR. Another version of e(.) uses the structure
similarity (SSIM), and we call it ORF-SSIM since it maximizes SSIM.

Table 1 summarizes the numerical evaluation results, where the average PSNR and SSIM
scores for different datasets and magnification factors are shown. Our ORF framework
achieves comparable or better accuracy in both PSNR and SSIM evaluation. Figs. 3, 4,
and 5 show some super-resolved results for visual comparison. Compared to other methods,
the proposed ORF framework has better capability to recover missing details.

Comparing our ORF to other methods, the improved visual quality of our result is ob-
vious. Moreover, the objective quality metrics PSNR and SSIM support this result. We
attribute the better performance to the EM-algorithm and accurate classifier.

(e) Zeyde (f) ANR (g) A+ (h) Our ORF-PSNR
Figure 4: Butterfly image from Set14 dataset with upscaling 3x. The ringing effects aroud
egde still happen in A+. We assume that is caused by non-optimal regressors.
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(e) Zeyde (f) ANR (g) A+ (h) Our ORF-PSNR
Figure 5: Statue image from BSD dataset with upscaling 2x. 2x is the simple case for all the
methods, but our improvements are still easily noticeable

5 Conclusion

In this paper we propose a super resolution framework based on the optimized regressors and
random forest. The optimized regressors could preserve the custom-define feature, and we
have shown that in the cases of mean square error and structure similarity. With the power
of random forest, the best regressor could be found no matter what features the regressors
are optimized for. Experimental results show that the proposed algorithm outperforms the
other methods both in PSNR and SSIM. In future work, we will try to extend our method to
improve the other computer vision works [6] to be regardless of input resolution.
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