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Abstract

Stereo visual odometry estimates the ego-motion of a stereo camera given an im-
age sequence. Previous methods generally estimate the ego-motion using a set of inlier
features while filtering out outlier features. However, since the perfect classification of
inlier and outlier features is practically impossible, the motion estimate is often contam-
inated by erroneous inliers. In this paper, we propose a novel three-point direct method
for stereo visual odometry, which is more accurate and robust to outliers. To improve
both accuracy and robustness, we consider two key points: sampling a minimum num-
ber of features, i.e., 3 points, and minimizing photometric errors in order to maximally
reduce measurement errors. In addition, we utilize temporal information of features, i.e.,
feature tracks. Local features are updated by the feature tracks and the updated feature
points improve the performance of the proposed pose estimation. We compare the pro-
posed method with other state-of-the-art methods and demonstrate the superiority of the
proposed method through experiments on the KITTI benchmark.

1 Introduction
Estimating the ego-motion of a camera given an image sequence, called visual odometry, is
one of the main research topics in computer vision and robotics. It is extensively used in a
large number of applications such as object detection and tracking [3] and navigation [17].
Especially, visual odometry based on a stereo camera has been intensively studied because it
is able to accurately and instantly estimate the ego-motion at a metric scale from calibrated
stereo configuration and so is considered as a powerful means for autonomous driving.

Existing visual odometry methods are generally classified into two groups; feature-based
and direct methods. Feature-based methods [1, 2, 5, 8, 13, 21, 24, 26, 27] exploit feature
points extracted and tracked in consecutive frames. The measurement errors are defined by
the re-projection errors of feature points, and the ego-motion is estimated by minimizing
the re-projection errors of feature points with the assumption that the measurement errors
of tracked feature points usually conform to the Laplace distribution [2]. However, since
the local appearance of the feature point consecutively varies with time, the location of the
tracked feature point tends to drift from its initial location during tracking and this results
in error accumulation. In contrast, direct methods [7, 9] minimize the measurement errors
measured by intensity differences between consecutive images. Since a large number of pix-
els are utilized for motion estimation, these methods are superior to feature-based methods
in the error accumulation aspect. However, in return, the direct methods have a difficulty
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Figure 1: The distributions of re-projection errors for estimated (blue) and ground truth
motion (red) in selected frames of the KITTI dataset. In (a), the distribution violates the
Laplace distribution assumption of the measurement errors because of outliers from moving
objects. In (b), the measurement errors are biased.

in handling outliers and are vulnerable to illumination change. For this reason, most of the
recent visual odometry methods are feature-based and exploit local image features for ro-
bustness in real-world scenes. They generally use a maximum consensus set of inlier feature
points on the Laplace distribution assumption of measurement errors. However, as shown
in Fig. 1, the assumption is often violated in the real-world scene because of lots of outliers
and/or biases of measurement errors. In this situation, although a motion candidate may
be accurately obtained from a small number of point samples in the RANSAC framework
[10], its final estimate optimized from the set of inliers can be rather erroneous. The work of
Chum et al. [6] tried to solve the similar problem using an iterative local RANSAC scheme
but it is still hard to hold thoroughly uncontaminated inliers only.

In this paper, we propose a new hybrid method of the feature-based and direct methods,
which samples and uses a minmimum number of feature points only (i.e., 3 points) to esti-
mate ego-motion without any additional optimization using all inliers. The proposed method
maximally excludes the errors caused by inaccurate inliers while handling the sensitivity to
measurement errors caused by using a small number of feature points. Experimental results
show the proposed method produces better performance than the existing methods using all
inliers.

1.1 Related work
Since the work of Nister et al. [24], visual odometry has been intensively studied in the last
decade. Because we focus on stereo visual odometry in this paper, we review the works on
stereo visual odometry. More details on visual odometry can be found in [12, 30].

As mentioned earlier, methods for stereo visual odometry are usually divided into two
classes; feature-based and direct methods. The basis of the feature-based methods has been
formed by Nister et al. [24]. In the work, local features extracted by the Harris corner
detector [16] are matched using normalized cross-correlation (NCC) and ego-motion is esti-
mated using the perspective-3-point (P3P) algorithm [15] and the RANSAC technique [10].
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Geiger et al. [13] proposed an algorithm that uses a simplified feature detection and matching
method to quickly handle many features and performs the Gauss-Newton optimization algo-
rithm to minimize the re-projection errors of feature points extracted in both stereo image
pairs. In [5, 29], a key-frame scheme used in the monocular visual odometry was exploited.
It is computationally efficient and possible to estimate more accurate motion from the feature
points with sufficient displacement. In recent works [1, 2, 21, 26], the trajectories of features
tracked over several frames are taken into account to update the 3D positions of the features.
For the feature update, the extended Kalman filter (EKF) is used in [1] and the local bundle
adjustment (LBA) [32] is used in [21, 26]. They significantly improve the accuracy of visual
odometry holding high ranks in the visual odometry benchmark [14].

On the other hand, the direct methods [7, 9, 11] have attracted attention in recent years
because of the advantages in both computational efficiency and accuracy aspects. Comport
et al. [7] proposed the direct stereo visual odometry based on the quadrifocal tensor. The
algorithm achieves the highest accuracy among the algorithms that do not utilize temporal
feature information. Engel et al. [9] proposed a semi-dense direct method that updates fea-
tures at each frame and thus improves accuracy significantly. However, the previous direct
methods still have a difficulty in determining outliers because the M-estimator in [7] or the
simple outlier rejection method in [9] are not robust for the scenes with many outliers. In the
next section, we propose a novel hybrid method that takes advantages of the feature-based
and direct methods.

2 Proposed method
To solve the problem shown in Fig. 1, we propose a method aiming at estimating ego-motion
using only uncontaminated feature points. As it is difficult to distinguish the uncontaminated
features among lots of features, we randomly sample a minimum number of features and
exploit them for the estimation. However, using fewer features in feature-based methods can
rather degrade the performance because measurement errors caused in feature matching and
tracking can be propagated to the ego-motion estimation directly. Therefore, we propose a
hybrid method of feature-based and direct methods. It minimizes measurement errors by the
ego-motion estimation directly using image intensity values without any intermediate step to
search measurements and is more robust than conventional direct methods.

2.1 Feature extraction
To initialize features, key points are extracted using the FAST corner detector [28]. The
key points with local maximum responses within an 11×11 window are selected by a non-
maximum suppression algorithm [23]. The points extracted from stereo image are matched
using image descriptors. The descriptor is a 7×7 patch centered at each key point in a
gradient image computed by the 3×3 Sobel operator. The descriptors are matched by the
sum of absolute differences (SAD). We then compute disparities of key points with sub-
pixel accuracy. The key points with the reliable disparities are accepted as features and we
keep about 1000 features per frame.

2.2 Ego-motion estimation
2.2.1 Modeling

Given the pixel locations and 3D positions of feature points in the previous image, the di-
rect method estimates the ego-motion that minimizes photometric errors between the image
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Algorithm 1 Three-point direct method
Input: F , Ik−1, Ik
Output: ξk,k−1

1: nmax← 0
2: repeat
3: ξ ← 06×1
4: sample 3 feature points F̄ ⊂ F
5: for l = MaxPyramidLevel to 1 do
6: determine R fi for ∀ fi ∈ F̄
7: repeat
8: compute Jp, H, and Ik−1(p)− Ik(π(Xp,T(ξ ))) for ∀p ∈R fi

9: compute ∆ξ using Eq. (4)
10: update ξ with ∆ξ using Eq. (2)
11: until N times or ξ converges
12: end for
13: n← NumberOfInliers(ξ )
14: if nmax < n then
15: nmax← n, ξbest ← ξ
16: end if
17: until M times
18: ξk,k−1← ξbest

patches of the features. This problem is concerned with finding a least-squares estimate of
ego-motion ξ . The cost function to be minimized is defined as

C(ξ ) =
1
2

n

∑
i

Ri

∑
p
{Ik(π(Xp,T(ξ )))− Ik−1(p)}2, (1)

where ξ = [v>,ω>]> ∈ se(3) is a 6D pose comprised of a linear velocity v ∈ R3 and an
angular velocity ω ∈ R3, n is the number of feature points, Ri is a set of pixels around the
i-th feature point (i.e., an image patch of the i-th feature), p ∈Ω is a 2D coordinate of a pixel
in the image domain, Ik(p) : Ω→ R is an intensity of a pixel p in the k-th frame, T(ξ ) :
se(3)→ SE(3) is the exponential map, and π(Xp,T(ξ )) : R3× SE(3)→ Ω is a projection
function. The 3D cartesian coordinate Xp is transformed by T(ξ ) and then projected onto
the image coordinate p.

To minimize Eq. (1), we use the Gauss-Newton method. The pose ξ is iteratively updated
with the increment of the parameter ∆ξ . The parameter update is performed by the forward
compositional method [4, 11] as in Eq. (2).

T(ξ )←−[ T(ξ )T(∆ξ ) (2)

If Eq. (2) is substituted in Eq. (1), then we obtain a function of the increment ∆ξ . Since
the altered cost function is nonlinear, we approximate the value Ik with its first-order Taylor
expansion as

C(∆ξ )≈
n

∑
i

Ri

∑
p
{Ik(π(Xp,T(ξ )))+ Jp∆ξ − Ik−1(p)}2, where Jp =

∂ Ik(p)
∂∆ξ

∣∣∣∣
∆ξ=0

. (3)

The jacobian Jp is consequently linear and the increment ∆ξ is therefore computed as
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Figure 2: The means and standard deviations of autocorrelation values for the different image
patches. The autocorrelation of an image patch is commonly decreased along the distance
and the image patches with different intensity patterns have different auotocorrelation values
along the distance. Thus, the autocorrelation values can be used as an adaptive threshold to
match image patchs.

∆ξ = H−1
n

∑
i

Ri

∑
p

JT
p [Ik−1(p)− Ik(π(Xp,T(ξ )))] , where H =

n

∑
i

Ri

∑
p

JT
p Jp. (4)

Since the direct methods are usually suitable for small displacement of feature points but
not for large displacement, we exploit a hierarchical process using image pyramids to handle
large motion. In addition, we implement the proposed method with an inverse composi-
tional method. It is computationally more efficient than the forward compositional method
as demonstrated in [4]. The details are referred to [4, 11].

2.2.2 Three-point direct method

To accurately estimate the camera pose using a small number of feature points, we pro-
pose the hybrid method, i.e., 3-point direct stereo visual odometry. The proposed method is
shown in Algorithm 1. Given a set of features F = { f1, ..., fn}, we randomly sample three
features. Then, the direct method described in Sec. 2.2.1 is performed using the three sam-
pled features. In the experiment, we set MaxPyramidLevel to 5, which is enough to handle
large displacement of features. The number of iterations N is set to 30 but the iteration is
terminated if the parameter ξ converges. The sizes of the image patches for R fi are 9×9,
9×9, 7×7, 7×7, and 7×7 windows in the ascending order of the pyramid levels, considering
the tradeoff between computational speed and accuracy. Assuming each image patch to be
fronto-parallel, all the disparities in an image patch are also assumed to be the same.

At line 13 of Algorithm 1, whether a feature is an inlier or not is determined by matching
the image patches of the feature point projected onto Ik−1 and Ik, given the motion candidate
ξ . If the zero-mean normalized cross-correlation (ZNCC) between the 9×9 image patches
for the i-th feature is larger than a threshold Ti, then the i-th feature is accepted as an in-
lier. We make the threshold Ti adaptively vary because a constant threshold is not proper
for checking the correlation between the patches with different shapes and intensity val-
ues. Accordingly, we adopt the self-aware distance transform [25] that adaptively measures
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a matching threshold from autocorrelation of each image patch. As shown in Fig. 2, the
patches with different intensity patterns have different autocorrelation values. If we assume
that an image patch changes smoothly over an image sequence, the autocorrelation of the
patch can be used to predict the matching threshold. When µi and σi denote the mean and
standard deviation of the autocorrelation values of the i-th feature for the distance of 1 pixel,
the threshold Ti is defined as in Eq. (5).

Ti =





α, if µi +2σi > α
β , if µi +2σi < β
µi +2σi, otherwise

(5)

The parameters α and β are upper and lower bound thresholds empirically set to 0.97 and
0.7, respectively. The adaptive thresholding scheme improves the accuracy and robustness
of visual odometry, which will be demonstrated in Sec. 3.

2.3 Feature update
The 3D positions of features are computed by triangulation. However, as mentioned in the
literature [5, 18], the position of a feature computed from stereo matching is not accurate
because of inaccurate stereo calibration and the uncertainty of the depth at a far distance.
Therefore, it is necessary to correct 3D positions of the features. In order to update the
feature, we exploit the inverse depth parameterization [22]. The parameter of the i-th feature
is defined as yi = [Xi,Yi,Zi,θi,φi,ρi]

> where the vector [Xi,Yi,Zi]
> is the position of the

camera, θi and φi azimuth and elevation, and ρi an inverse depth. From the parameter yi, the
3D location of the i-th feature is computed as follows:

Xi = [Xi,Yi,Zi]
>+

1
ρi

m(θi,φi), where m = [cosφi sinθi,−sinφi cosθi,cosθi]
>. (6)

The parameter yi is updated by the EKF. A measurement equation of the EKF is defined
by the projection equation hi = π(Xi,Tcw) with the Euclidean transformation Tcw from the
world coordinates to the camera coordinates. Measurements are obtained from the Kanade-
Lucas-Tomasi (KLT) feature tracker [31]. If a measurement of a feature is not acquired, then
the feature is removed from a list of features.

2.4 Implementation details
Illumination correction In practical situations, illumination of the scene can be varied
over time. It may significantly affect the proposed method because both the direct visual
odometry and the KLT tracker are based on the intensity conservation assumption. Hence,
to correct the illumination change, we properly exploit the global color transfer scheme [20].
This scheme assumes that global illumination change between two images conforms to affine
transformation. The affine transformation is defined as

Ik−1 =
σk−1

σk
(Ik−µk)+µk−1, (7)

where µk and σk are the mean and the standard deviation of all the intensity values of an im-
age at time k. Although the illumination is not perfectly corrected between two consecutive
images, the distinctiveness of corner features is maintained enough under the approximately
matched illumination. We observe that the proposed method successfully works in various
test sets after the affine global illumination transformation model is applied.
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Input images (a) TDM90 (b) TDMAT

Figure 3: The robustness of the adaptive thresholding scheme. In (a) and (b), green and red
points represent inliers and outliers, respectively. The cars in the colored boxes are moving
objects on which the feature points should be classified into outliers.

Motion prediction Motion prediction can be used to guide the ego-motion estimation. We
assume that motion is changed with a constant linear and angular velocity. For the sake of the
simplicity of the implementation, the motion estimated from the previous two frames is used
as the prediction of the current ego-motion. The motion prediction enables the ego-motion
to be successfully estimated even in repetitive patterns and reduces computational time.

Feature selection It is important to determine which features should be sampled in the
RANSAC process of the ego-motion estimation, because we suppose that motion can be
reliably computed using a small number of features. Cvisic and Petrovic [8] exploited a sur-
vival age of a feature for careful feature selection which remarkably improves the accuracy
of visual odometry. We also consider the survival age but its use is slightly different from the
method of [8]. In the RANSAC process, we use only the features over the age of 1 in order
to sample 3 points and check inlier features. Since most outlier features are immediately re-
moved, survival features can be considered reliable. It increases the probability of selecting
uncontaminated features.

3 Experimental results
We evaluate the proposed method using the publicly available KITTI dataset [14]. The
benchmark datasets include a lot of challenging image sequences such as country roads
and highways in which the illumination is considerably varied or there exist only a small
number of reliable inlier features because of moving objects. The proposed method is com-
pared with the VISO2-S [13] and the baseline algorithm. The baseline algorithm uses the
feature extraction and matching methods mentioned in Sec. 2.1. In the algorithm, a max-
imum consensus set of inlier features is selected in the RANSAC process using the robust
P3P algorithm [19] and the motion estimate is then optimized by the Gauss-Newton method
using all the inliers. Base1 and Base3 denote the baseline algorithm with inlier thresholds of
1 and 3 pixels, respectively. TDM70 and TDM90 denote the three-point direct method with
ZNCC thresholds of 0.70 and 0.90, respectively. TDMAT is the three-point direct method
with the adaptive thresholding scheme. All the RANSAC processes of both the baseline and
proposed algorithms equally run 1000 iterations at each frame.

3.1 Performance analysis
Table 1 shows the performances of the baseline and the proposed algorithms. The table
represents an average of relative position errors, which is the main ranking criterion in the
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Table 1: Performance comparison in the KITTI dataset. MP denotes the motion prediction,
U the feature update, and S the feature selection technique. In this table, we only represent
averages of relative translation errors (%).

Algorithm 0 1 2 3 4 5 6 7 8 9 10 Total

VISO2-S [13] 2.74 4.65 2.28 2.48 0.99 2.14 1.30 2.29 2.78 2.55 1.62 2.53
Base1 2.21 6.16 1.65 0.91 1.10 1.37 1.35 2.24 1.60 1.53 0.86 1.90
Base3 2.44 13.06 1.44 1.22 1.29 1.43 1.37 2.73 2.10 1.76 2.15 2.40

TDM70 2.00 10.97 1.64 1.38 0.98 1.42 1.22 1.68 1.88 1.53 0.82 2.12
TDM90 1.64 8.44 1.55 1.07 1.26 1.24 1.48 1.47 1.47 1.68 0.66 1.81
TDMAT 1.74 4.87 1.57 1.07 1.01 1.25 1.45 1.68 1.52 1.54 0.51 1.67

Base1+MP 2.26 4.55 1.65 0.93 1.10 1.42 1.36 2.27 1.63 1.54 0.84 1.85
TDMAT+MP 1.76 3.60 1.52 1.14 0.95 1.20 1.34 1.80 1.50 1.51 0.57 1.59
Base1+MP+U 1.44 4.65 1.15 0.91 1.10 0.92 1.11 1.56 1.28 1.40 0.66 1.38

TDMAT+MP+U 1.33 4.12 1.10 1.07 1.11 0.88 0.96 1.41 1.22 1.39 0.46 1.29
Base1+MP+U+S 1.07 4.61 0.88 1.05 1.31 0.84 1.11 1.23 1.18 1.38 0.67 1.20

TDMAT+MP+U+S 1.04 4.05 0.99 1.23 1.53 0.87 1.05 1.14 1.13 1.42 0.60 1.18

KITTI benchmark [14]. In addition, Fig. 4 shows some results of the proposed method for
the KITTI benchmark dataset.

Adaptive thresholding scheme We qualitatively evaluate the adaptive thresholding scheme
in some challenging image sequences. In Fig. 3, there exist moving objects on which there
are many feature points expected to be outliers. Contrary to the results of TDM90, TD-
MAT correctly classifies all the points on the moving cars into the outliers. These results
demonstrate that the adaptive thresholding scheme improves the classification performance.
In addition, the performance of the proposed method is quantitatively evaluated in Table 1.
TDMAT shows the lowest translation error of 1.67% among VISO2-S, the baseline, and the
proposed algorithm. It demonstrates that the proposed 3-point direct method achieves better
performance than the algorithms using all inliers and the adaptive thresholding scheme is
better than the constant thresholding scheme as well.

Superiority of the three-point direct method We have assumed that the ego-motion com-
puted from a minimum number of good features will be more accurate than the estimate from
a lot of moderate-quality inliers. It can be verified by comparing TDMAT and Base1. As
shown in Table 1, TDMAT is superior to Base1 in most of the sequences. In particular, the
proposed method shows the better performance in the urban scenes such as the dataset 0, 5,
7, and 10 because a lot of distinctive feature points extracted in the urban scenes improve the
performance of the 3-point direct method.

Motion prediction In the sequence 1 of Table 1, the translation errors of all the methods
are very high because feature matching fails due to the repetitive patterns such as guard rails.
The motion prediction is useful in this case. It does not usually influence the performance
but helps the ambiguous features matched. In Table 1, it is verified that the performances of
both Base1+MP and TDMAT+MP are higher than those of Base1 and TDMAT.

Feature update and selection The feature update and selection schemes are evaluated in
Table 1. The performances of TDMAT+MP+U and TDMAT+MP+U+S are remarkably im-
proved in comparison with TDMAT+MP. Although the feature selection scheme considering
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Table 2: KITTI leaderboard. The main techniques applied to each method are represented in
the bracket. BA represents the local bundle adjustments, L the loop closing, MP the motion
prediction, U the feature update using feature tracks, S the feature selection, and K the key-
frame scheme.

Method Translation Rotation

SOFT (S) [8] 1.03 % 0.0029 [deg/m]
cv4xv1-sc (BA,MP) [26] 1.09 % 0.0029 [deg/m]

S-LSD-SLAM (L,U,K) [9] 1.20 % 0.0033 [deg/m]
MFI (U) [2] 1.30 % 0.0030 [deg/m]

S-PTAM (BA,MP,K) [27] 1.35 % 0.0023 [deg/m]
TLBBA (BA)[21] 1.36 % 0.0038 [deg/m]

Proposed (MP, U, S) 1.47 % 0.0030 [deg/m]
StereoSFM (U)[1] 1.51 % 0.0042 [deg/m]
SSLAM (S,K) [5] 1.57 % 0.0044 [deg/m]
eVO (MP,K)[29] 1.76 % 0.0036 [deg/m]

Proposed (without MP, U, S) 1.97 % 0.0036 [deg/m]
D6DVO [7] 2.04 % 0.0051 [deg/m]

VISO2-S [13] 2.44 % 0.0114 [deg/m]

a survival age of a feature is very simple, it partly influences on overall performance in the
ego-motion estimation. Moreover, the proposed method is still superior to the baseline algo-
rithm. It demonstrates that the proposed three-point direct method is more accurate than the
existing method using all of the inliers that can be partially erroneous.

3.2 Evaluation with test datasets

The results of the proposed method for the test sets of the KITTI dataset are shown in Ta-
ble 2. The proposed method without additional techniques, Proposed(without MP,U,S), can
be compared with VISO2-S [13] and D6DVO [7] which are representative feature-based and
direct methods, respectively. Both of them are optimized using many inlier features. Pro-
posed(without MP,U,S) shows the better performance than both the methods. In particular,
Proposed(without MP,U,S) is superior to D6DVO which is a direct method using all pixel
points in an image. It demonstrates that the motion estimation using a small number of points
can provide better performance than the one using lots of features. Here, the performance
of Proposed(with MP,U,S) is lower than the performances of other methods [9, 21, 26, 27].
This is because that, while they use the LBA or loop closure that re-optimize camera’s poses
in key-frames using a bundle of the poses and map data, the proposed method is a frame-by-
frame system which is more preferable to the application such as [3]. Its performance can be
also more improved applying the LBA or loop closure to the proposed method.

4 Conclusion
In this paper, we proposed the three-point direct stereo visual odometry method. We as-
sume that the ego-motion estimation using a minimum number of accurate features from a
contaminated inlier feature set provides a more accurate estimate. Accordingly, we com-
pute ego-motion by sampling only three points and minimizing photometric errors of their
local feature patches. The proposed method was evaluated in the publicly available KITTI
dataset. The proposed three-point direct method achieved the better performance than the
methods that optimize a motion estimate using all inliers. However, the feature positions
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Figure 4: Some results of the proposed method. The red and blue lines represent the ground
truth and the results of the proposed method, respectively.

reconstructed from stereo images and then updated are not still perfectly accurate. In the fu-
ture work, we plan to study a feature update method for getting more accurate 3D positions
of features and then apply it to the proposed method.
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