
OnionNet: Sharing Features in Cascaded Deep Classifiers

Martin Simonovsky
martin.simonovsky@enpc.fr

Nikos Komodakis
nikos.komodakis@enpc.fr

Imagine Lab
Université Paris Est / École des Ponts
Paris, France

Max-pooling
Convolution
 & ReLU

Convolution
 & ReLU

Max-pooling
Convolution
 & ReLU

Convolution

Figure 1: Top - OnionNet: the first stage (S1, orange) shares its intermediate feature maps (visualized
as cubes) with the second stage (S2, blue). Bottom - A traditional cascade: stages are independent
and S2 has to be evaluated fully, recomputing certain features (purple).

The focus of our work is speeding up eval-
uation of deep neural networks in retrieval sce-
narios. A popular approach to reduce time spent
on negative examples is to set up a cascade of
classifiers of increasing strength, called stages.
As these are trained for the same or a similar ob-
jective, the question is how much their features
(should) have in common. Without any sharing,
a representation presumably at least as powerful
as in the previous stage has to be rebuilt in the
following one.

We address this by proposing OnionNet,
a novel feature-sharing cascaded architecture
where the next stage extends the feature map set
of the previous stage, preventing repeated com-
putation. Crucially, the architecture is flexible:
the next stage may add both new layers as well
as new feature channels. We construct our cas-
cades by gradually increasing the width, possi-
bly in addition to depth. This is beneficial as the
lowest layers tend to be the most expensive ones
to compute while producing weak classifiers on
their own.

Figure 1 illustrates a two-stage OnionNet

cascade consisting of two branches with the
same layer organization. Each takes the same
input and is terminated by its own output layer.
The core idea is that the branches are linked be-
fore every convolutional layer. The feature maps
of the first stage (S1) are used as additional in-
put to the following convolutional layer in the
second stage (S2) but not the other way round,
creating a one-way dependence. The model
is trained end-to-end under a joint loss, which
makes the cascade learn the proper allocation of
features between the stages.

OnionNet is applied to three important
tasks: patch matching, proposal-based object de-
tection, and image retrieval. We demonstrate
good speed-ups due to cascades and show that
OnionNet sharing can bring further gain atop
of it, with only a marginal decrease in preci-
sion. Specifically, we achieve 2.8x, 2.9x, and
1.7x running time reduction in each respective
application. Furthermore, we provide a system-
atic study in theory and on a synthetic bench-
mark that sheds further light into the time cost
behavior of cascaded architectures.

