
LSTM for Image Annotation with Relative Visual Importance

Geng Yan1

Yang Wang2

Zicheng Liao1

1 College of Computer Science
Zhejiang University

2 Department of Computer Science
University of Manitoba

Objects in the scene: water, person, boat, float, trees

Humans attentively see: person, number, boat

Figure 1: An image may contain a rich set of objects, e.g. person, boat,
tree, water, helmet, etc. But when humans are asked to describe an image,
they do not enumerate all the objects in the image. Instead, they will
choose a few important objects and put them in the some order depending
on the relative importance of these objects. In this paper, we develop a
method for generating such ranked list of object tags that take into account
of the relative object importance.

We consider the problem of image annotations that takes into account
of the relative visual importance of tags. Humans have the remarkable
ability to selectively process very narrow regions of the scene that are im-
portant to us. So when asked to annotate the image in Fig. 1, we only
mention a subset of the objects appearing in the image, and we mention
the important objects first. In this paper, we propose a method for produc-
ing such ranked tag list for a given image. Such a ranked tag list can be
useful for various applications including image retrieval, image parsing
and image caption generation.

Our proposed approach combines the convolutional neural network
(CNN) for images and the LSTM for sequential data. First, we extract
a feature vector from the given image using CNN. In this paper, we use
a convolutional neural network to represent the image, and use a LSTM
model to represent the ordered tag list. Our model is inspired by some
recent work on using RNN models for image captioning [1]. But the dif-
ference is that in image captioning, the image feature only directly mod-
ulates the start state of the RNN used for generating the captions. Once
the first word in the caption is generated, the remaining words in the cap-
tion are generated purely based on the hidden states of the RNN and the
image feature is no longer used. For sentence generation, this is appropri-
ate since the words in a sentence tend to have very strong dependencies.
It is reasonable to use the image features to only start the initial state of
the RNN and let the RNN model take care of generating each word in a
sentence. However, we found this RNN model is insufficient for our ap-
plication. The reason is that words in a sentence tend to have very strong
dependencies, so it is possible to predict the next word based on previous
words in a sentence. In contrast, although the tags in a tag list have some
loose dependencies, they are not strong enough for us to predict the next
tag in the list purely based on previous tags. To address issue, we modify
the RNN model so that the memory cell at each time step also takes the
image feature as its one of the inputs. Fig. 2 illustrates our model and
compare it with the RNN model for image captioning.
Image representation: Following prior work (e.g. [1]), we represent
an image as a 4096-dimensional CNN feature vector using pre-trained
VGGNet. We then use a fully connected layer to reduce the dimension
to d. In other words, given an input image Im, we represent it as a d-
dimensional feature vector as:

I =WI ·CNN(Im)+bI (1)

where WI ∈ Rd×4096 and bI ∈ Rd are the parameters to be learned.
CNN(Im) is the 4096-dimensional CNN feature extracted on the image

Input Image

CNN

LSTM

LSTM

LSTM

horse

person

tree

activation

activation

activation

𝑊ℎ𝑖

𝑊ℎ𝑖

𝑊ℎ𝑖 𝑊ℎℎ

𝑊ℎℎ

𝑊𝑧ℎ

𝑊𝑧ℎ

𝑊𝑧ℎ

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+2

Input Image

LSTM LSTM

<start> last state output𝑊ℎ𝑖

𝑊ℎℎ 𝑊ℎℎ
LSTMCNN

Figure 2: Illustration of the LSTM model. (Top) In our model, the image
feature is used as an input to the LSTM at each time step. (Bottom) In the
LSTM model used for image captioning, the image feature is only used
to start the initial state in the LSTM model.

I.
LSTM for tag list prediction: We modify the standard LSTM, so that
the hidden state at each time step considers the image feature v(I) as one
of the inputs. In other words, our LSTM model is defined as follows:

it = σ(W (i)I +U (i)ht−1) (2)

ft = σ(W (f)I +U (f)ht−1) (3)

ot = σ(W (o)I +U (o)ht−1) (4)

c̃t = tanh(W (c)I +U (c)ht−1) (5)

ct = ft � ct−1 + it ◦ c̃t (6)

ht = ot � tanh(ct) (7)

At each time step t, we need to predict a tag from a vocabulary of size
V . We use another linear layer to project the hidden state ht into a vector
of dimension V , followed by a softmax operator. This will give us the
probability of choosing each of the V possible tags as the predicted tag at
time t:

zt =W (z)h(t)+b(z) (8)

pt,v =
exp(zt,v)

∑
V
k=1 exp(zt,k)

(9)

where zt ∈ RV , and pt,v denotes the probability of picking the v-th tag in
the vocabulary as the predicted tag at time t.
Model learning: Let Im be an image in the training set, and y =
[y1,y2, ..,yT]

> denotes the corresponding order tag list of length T . We
define the following loss function on this training instance:

`(Im,y) =
T

∑
t=1

V

∑
v=1

1(yt = v) · log(pt,v) (10)

The loss on the whole training set is simply the summation of the loss on
each training instance. The parameters of the model can be learned by
minimizing the loss function using stochastic gradient descent. We do not
explicitly use a regularization term in Eq. 10.

We demonstrate the effectiveness on the PASCAL2007 dataset and
the LabelMe dataset.

[1] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generat-
ing image descriptions. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

