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In the following we provide additional details regarding the differential formulation, the

parameter settings for the different methods as well as additional figures that illustrate the

results of our experiments in more detail.

1 Differential Formulation

Stereo Data Term. The differential formulation of the stereo data term is obtained by per-

forming a linearisation w.r.t. the depth increment dzk. Let us introduce ϕ
k,c
i := Ic

0(x0)−Ic
i (x

k
i )

for the brightness constancy assumption for each colour channel c ∈ {1,2,3}, where xk
i is the

position of the projected surface point with known depth zk corresponding to the position x0

in the reference frame. If we furthermore summarise the assumptions on the three channels

in a single vector

ϕk
i :=







ϕ
k,1
i

ϕ
k,2
i

ϕ
k,3
i






(1)

we obtain the following linearised constraints for the brightness and gradient constancy as-

sumption, respectively:

ϕk
i,0 := ϕk

i (x0)+
∂ϕk

i (x0)

∂ zk(x0)
·dzk(x0) , (2)

ϕk
i,x :=

∂

∂x0
ϕk

i (x0)+
∂ 2ϕk

i (x0)

∂ zk(x0)∂x0

·dzk(x0) , (3)

ϕk
i,y :=

∂

∂y0
ϕk

i (x0)+
∂ 2ϕk

i (x0)

∂ zk(x0)∂y0

·dzk(x0) . (4)
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Further we follow [4, 6] and normalise the linearised constraints. To this end, we introduce

the following normalisation factors

θ
k,c
0 :=





(

∂ϕ
k,c
i

∂ zk(x0)

)2

+ζ 2





−1

, (5)

θ k,c
x :=





(

∂ 2ϕ
k,c
i

∂ zk(x0)∂y0

)2

+ζ 2





−1

, θ k,c
y :=





(

∂ 2ϕ
k,c
i

∂ zk(x0)∂x0

)2

+ζ 2





−1

, (6)

where ζ is a small parameter to prevent division by zero. Combining linearisation and nor-

malisation, we finally obtain the following differential formulation for the stereo term

DStereo

(

dzk
)

=

∫

Ω0

1

n

n

∑
i=1

ΨL

(

(

ϕk
i,0

)⊤
diag

(

θ
k,1
0 ,θ k,2

0 ,θ k,3
0

)

ϕk
i,0

)

(7)

+ΨL

(

(

ϕk
i,x

)⊤
diag

(

θ k,1
x ,θ k,2

x ,θ k,3
x

)

ϕk
i,x

)

(8)

+ΨL

(

(

ϕk
i,y

)⊤
diag

(

θ k,1
y ,θ k,2

y ,θ k,3
y

)

ϕk
i,y

)

dx0 . (9)

SfS Data Term. Regarding the more difficult linearisation of the SfS term we follow the

recent work of Maurer et al. [3]. Due to the hyperbolic nature of this term, we first replace

the partial depth derivatives in R with an appropriate upwind scheme approximation and

obtain R. In a second step we linearise R
k

w.r.t. the relevant increments. By introducing

φ k := I0(x0)−R
k
, where R

k
is computed with the known values of level k, the differential

SfS data term can then be written as

DSfS

(

dzk,dlk,dρk
)

=

∫

Ω0

(

∥

∥

∥

∥

φ k + ∑
h∈H

∂φ k(x0)

∂ zk(x0 +h)
dz(x0 +h)k

+
∂φ k(x0)

∂ lk(x0)
dlk(x0)

k +
∂φ k(x0)

∂ρk(x0)
dρk(x0)

k

∥

∥

∥

∥

2

)2

dx0 , (10)

where H = {−hy,−hx,0,+hx,+hy} is the neighbourhood involved in the upwind approx-

imation of R and hx = (hx,0)
⊤

, hy = (0,hy)
⊤

are the grid spacings hx and hy in x- and

y-direction, respectively. For additional details on the linearisation we refer the reader to [3].

Regularisation Terms. In contrast to the two data terms, the differential formulation of the

three smoothness terms is rather straightforward. It is given by

Rillum

(

dlk
)

=
∫

Ω0

ΨI

(

∥

∥

∥J (lk +dlk)
∥

∥

∥

2

F

)

dx0 , (11)

Ralbedo

(

dρk
)

=
∫

Ω0

g
(

‖J (ch(I0))‖
2
F

)

·
∥

∥

∥J (ρk +dρk)
∥

∥

∥

2

F
dx0 , (12)

Rdepth(dzk) = inf
duk

∫

Ω0

(

C(dzk,duk)+αu ·S(duk)
)

dx0 , (13)
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with

C(dzk,duk) =
2

∑
d=1

Ψd
C

(

(

r⊤d

(

∇(zk +dzk)− (uk +duk)
))2

)

, (14)

S(duk) =
2

∑
d=1

Ψd
S

(

2

∑
m=1

(

r⊤mJ (uk +duk)rd

)2

)

. (15)

Increment Regularisation. Since the differential formulation of the energy is based on an

incremental linearisation of the data terms, one has to ensure robustness w.r.t. large erroneous

increments (e.g. if the linearisation is locally not valid). To this end, we penalise the length

of the increments with respective weighting factors αdz, αdl, and αdρ , which yields

Rinc =
∫

Ω0

αdz ·
∥

∥

∥
dzk
∥

∥

∥

2

2
+αdl ·

∥

∥

∥
dlk
∥

∥

∥

2

2
+αdρ ·

∥

∥

∥
dρk
∥

∥

∥

2

2
dx0 . (16)

Please note that, as the incremental coarse-to-fine fixed point iteration converges, the in-

fluence of the additional length regularisation vanishes, since the term only penalises the

increments and not the actual values. This particularly holds if multiple fixed point steps are

performed per resolution level, since increments in later steps tend to zero.

1.1 Parameter Scaling

To account for the fact that the zero initialisation of the illumination vector does not allow

the SfS data term to provide any useful information at coarser levels, a sigmoid weighting

function is introduced that increases the SfS weight ν at finer levels. The corresponding

weight is given by

ν := sν ·ν , with sν :=
1

1+ e
−(k/kmax)+b

a

, (17)

where the slope and the shift can be adjusted with the parameters a and b, respectively.

Throughout our experiments we set a = 0.1 and b = 0.5. Further we apply the same scaling

to the albedo and illumination regularisation weights, to ensure that the relative weighting is

not affected. Finally, we employ a resolution level depended scaling of αz, αl, and αρ using

αz := sα ·αz , αl := sα ·αl , αρ := sα ·αρ , with sα :=

(

1

hk
x ·h

k
y

)1/2

, (18)

where hk
x and hk

y denote the grid size of the current level in x- and y-direction, respectively.

2 Parameters

In all our experiments we used a fixed set of solver related parameters: 20 iterations per reso-

lution level, 2 non-linear fixed-point iterations, 20 SOR iterations, a downsampling factor of

η = 0.8, an over-relaxation parameter of ω = 1.8 and hz = hl = hρ = 10−12 for the numer-

ically computed derivatives (cf. [3]). In addition, we chose the regularisation parameter for

the data term normalisation ζ = 0.01 and the gradient constancy weighting factor γ = 1.0.

In case of the Charbonnier penaliser we set λ = 0.01 and for the robust function ΨL we used
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Combined approach ν αz αu αl αρ αdz αdl αdρ λ (1)

Blunderbuss Pete 0.05 100 0.1 50 100 0 0.5 0.5 0.005

Angel 3.0 200 0.1 30 600 0 3.0 3.0 0.005

Fountain-P11 1.0 350 0.1 15 300 0 0.5 0.5 0.001

Herz-Jesu-P8 1.0 400 0.1 15 300 0 0.5 0.5 0.001

Pure stereo approach ν αz αu αl αρ αdz αdl αdρ λ (1)

Blunderbuss Pete - 100 0.1 - - 0 - - 0.005

Angel - 400 0.1 - - 0 - - 0.005

Fountain-P11 - 300 0.1 - - 0 - - 0.001

Herz-Jesu-P8 - 400 0.1 - - 0 - - 0.001

Galliani et al. [1] w
(2)

n
(3)
d γ α τcol τgrad zmin zmax

Fountain-P11 35×35 100 10 0.9 10 2 3.5 12 -

Herz-Jesu-P8 31×31 100 10 0.9 10 2 5 19 -

Graber et al. [2] n
(4)
p n

(5)
w n

(6)
s η λ ε zmin zmax

Fountain-P11 30 30 60 0.9 0.0114 10−3 3.5 12 -

Herz-Jesu-P8 30 30 60 0.9 0.045 10−3 5 19 -

(1) λ for the Perona-Malik penaliser (2) window size (3) iterations for the diffusion-like scheme

(4) number of pyramid levels (5) warps per pyramid level (6) iterations per warp

Table 1: Parameter settings for the different datasets and approaches.

ε = 0.001. The remaining parameters were chosen individually for each dataset as listed in

Table 1. The parameter settings for the method of Galliani et al. [1] and Graber et al. [2]

are also given in Table 1. Regarding the method of Graber et al. we even optimised the level

depended parameter scaling function in the python code from

λl = λ ·

(

1

η

)l

to λl = λ ·

(

1

η

)1.5·l

, (19)

which led to a noticeable improvement of the results. In this context l denotes the current

pyramid level (the finest resolution is given on level l = 0).

Parameter selection. In order to obtain good reconstruction results in general parameters

have to be adjusted properly. While the solver related parameters mainly effect the trade off

between reconstruction quality and runtime performance and thus can be set fixed in advance

(see above), the model parameters have direct impact on the quality and thus must be selected

more carefully. In this context, a convenient strategy is to first adjust the parameters of the

pure stereo model and then extend the parameter set to the parameters of the combined

model. From our experience the optimal model parameters may vary depending on the

intrinsic camera parameters as well as the distance of the scene to the camera. However,

even some of the model parameters turned out to be suitable for a wider range of images and

thus can also be set fixed in advance (see above). What remains to be adjusted are essentially

the hyper parameters for the different terms of the differential energy (see Table 1).
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3 Experiments

Apart from providing additional results for the three experiments in the main paper, we also

performed a fourth experiment that analyses the influence of the normalisation of the stereo

data term. To this end, we focussed on the pure stereo method and computed results for

the Blunderbuss Pete dataset with and without normalisation. The corresponding results are

depicted in Figure 1. They reveal that without normalisation artefacts arise at image edges –

even if one increases the amount of regularisation. This finding is in accordance with [6].

Let us now turn towards the additional results. Figure 2, Figure 3 and Figure 4 show

the input images as well as the computed albedo and illumination direction. Moreover,

Figure 5 and Figure 6 depict larger versions of the results of the corresponding experiments

in the main paper. Finally, Figure 7 and 8 show the reconstructed scenes from a different

perspective.

Figure 1: Influence of the normalisation. From left to right: Pure stereo with normalisation.

Pure stereo without normalisation (αz = 5 ·103, αz = 104).

Figure 2: Real-world Angel dataset. Top row: Reference view (0), computed albedo, com-

puted illumination direction. Bottom row: Match views (1,27,26,25).
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Figure 3: Real-world Fountain-P11 dataset [5]. Top row: Reference view (6), match view

(7). Bottom row: Computed albedo, Computed illumination direction.

Figure 4: Real-world Herz-Jesu-P8 dataset [5]. Top row: Reference view (5), match view

(6). Bottom row: Computed albedo, Computed illumination direction.
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Figure 5: Real-world Fountain-P11 dataset [5]. First row: Reference image, Ground truth.

Second row: Our combined approach, our pure stereo approach. Third row: Graber et al.

[2], Galliani et al. [1].
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Figure 6: Real-world Herz-Jesu-P8 dataset [5]. First row: Reference image, Ground truth.

Second row: Our combined approach, our pure stereo approach. Third row: Graber et al.

[2], Galliani et al. [1].
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Figure 7: Real-world Fountain-P11 dataset [5]. From top to bottom: Ground truth, our

combined approach, our pure stereo approach, Graber et al. [2], Galliani et al. [1].
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Figure 8: Real-world Herz-Jesu-P8 dataset [5]. From top to bottom: Ground truth, our

combined approach, our pure stereo approach, Graber et al. [2], Galliani et al. [1].
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