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In the following we provide additional details regarding the differential formulation, the
parameter settings for the different methods as well as additional figures that illustrate the
results of our experiments in more detail.

1 Differential Formulation

Stereo Data Term. The differential formulation of the stereo data term is obtained by per-
forming a linearisation w.r.t. the depth increment dz¥. Let us introduce (pf’c :=1I§(x0) — ¢ (x¥)
for the brightness constancy assumption for each colour channel ¢ € {1,2,3}, where X{-‘ is the
position of the projected surface point with known depth z¥ corresponding to the position X
in the reference frame. If we furthermore summarise the assumptions on the three channels
in a single vector k1

i = | o (1

we obtain the following linearised constraints for the brightness and gradient constancy as-
sumption, respectively:
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Further we follow [4, 6] and normalise the linearised constraints. To this end, we introduce
the following normalisation factors

) —1
dohe
ke . i 2
0, = <8zk(xo)> +¢ , 5)
2 -1 2 -1
| P2 | Pk
ek,L = i 2 Gk,L = i 2 6
* <8zk(xo)8yo> +¢ ’ Y <azk(xo)8x0 +6 » ©

where { is a small parameter to prevent division by zero. Combining linearisation and nor-
malisation, we finally obtain the following differential formulation for the stereo term

DStereo (dzk) :/ % iWL ((‘Pﬁo) dlag (90 760 ’60 > (pz 0) (7)
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SfS Data Term. Regarding the more difficult linearisation of the SfS term we follow the
recent work of Maurer ef al. [3]. Due to the hyperbolic nature of this term, we first replace
the partial depth derivatives in R with an appropriate upwind scheme approximation and

I L =k . . .
obtain R. In a second step we linearise R™ w.r.t. the relevant increments. By introducing

d)k =Tp(x0) — ﬁk, where ﬁk is computed with the known values of level k, the differential
SfS data term can then be written as

Dsss (dzk,dlk,dpk)z / (‘

where H = {—hy,—h,,0,+h,,+h,} is the neighbourhood involved in the upwind approx-

—————dz(xo+h)"
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imation of R and h, = (,,0)", h, = (0,h,)" are the grid spacings h, and h, in x- and
y-direction, respectively. For additional details on the linearisation we refer the reader to [3].

Regularisation Terms. In contrast to the two data terms, the differential formulation of the
three smoothness terms is rather straightforward. It is given by

Ritum (dl") - /Q ¥, (HJ(]"erlk)HD dxo, (11)
0
Rato (a91) = [ & (17 (entto))}) - 76" +ap") | axo. (12)
Raepth (d2) = inf | (C(dzk,duk)+06u~S(duk)> dxo, (13)
u 0
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with
c(d,au*) =Y ¥ ( (v} (V(F+d) — (u* +du* 27 14
(dZ*,du”) dg’lc((rd((z—i—z) (u—l—u)))) (14)
2 2 s
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Increment Regularisation. Since the differential formulation of the energy is based on an
incremental linearisation of the data terms, one has to ensure robustness w.r.t. large erroneous
increments (e.g. if the linearisation is locally not valid). To this end, we penalise the length
of the increments with respective weighting factors o, &1, and ¢tgp, which yields

Rinc :/ Oz -
Qq

Please note that, as the incremental coarse-to-fine fixed point iteration converges, the in-
fluence of the additional length regularisation vanishes, since the term only penalises the
increments and not the actual values. This particularly holds if multiple fixed point steps are
performed per resolution level, since increments in later steps tend to zero.

k 2 k 2 k 2
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1.1 Parameter Scaling

To account for the fact that the zero initialisation of the illumination vector does not allow
the SfS data term to provide any useful information at coarser levels, a sigmoid weighting
function is introduced that increases the SfS weight v at finer levels. The corresponding
weight is given by
. 1
Vi=sy-V, with Sy ::m, (17)
1+e a

where the slope and the shift can be adjusted with the parameters a and b, respectively.
Throughout our experiments we set a = 0.1 and b = 0.5. Further we apply the same scaling
to the albedo and illumination regularisation weights, to ensure that the relative weighting is

not affected. Finally, we employ a resolution level depended scaling of a;, o, and @y using

| 1/2
O :=5q 0, 0:=Sq -0, Op:=5¢-0p, Wwith s4:= (M) , (18)
X y

where h§ and h{‘, denote the grid size of the current level in x- and y-direction, respectively.

2 Parameters

In all our experiments we used a fixed set of solver related parameters: 20 iterations per reso-
lution level, 2 non-linear fixed-point iterations, 20 SOR iterations, a downsampling factor of
N = 0.8, an over-relaxation parameter of @ = 1.8 and h, =y = hp = 10~ for the numer-
ically computed derivatives (cf. [3]). In addition, we chose the regularisation parameter for
the data term normalisation { = 0.01 and the gradient constancy weighting factor y = 1.0.
In case of the Charbonnier penaliser we set A = 0.01 and for the robust function ¥, we used
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Combined approach Y o, oy 0 Op Og;  Ca Odp A0
Blunderbuss Pete 0.05 100 0.1 50 100 0 0.5 0.5 0.005
Angel 3.0 200 0.1 30 600 0 3.0 3.0 0.005
Fountain-P11 1.0 350 0.1 15 300 0 0.5 0.5 0.001
Herz-Jesu-P8 1.0 400 0.1 15 300 0 0.5 0.5 0.001
Pure stereo approach Y o oy o 0 Og; Oa  Ogp A0
Blunderbuss Pete - 100 0.1 - - 0 - - 0.005
Angel - 400 0.1 - - 0 - - 0.005
Fountain-P11 - 300 0.1 - - 0 - - 0.001
Herz-Jesu-P8 - 400 0.1 - - 0 - - 0.001
Galliani et al. [1] WP ) oy a t Tgad Zmin Zme
Fountain-P11 35%x35 100 10 0.9 10 2 3.5 12 -
Herz-Jesu-P8 31x31 100 10 0.9 10 2 5 19 -
Graber et al. [2] n£,4) n\<,\,5 ) ngé) n A € Zmin  Zmax
Fountain-P11 30 30 60 09 00114 1073 35 12 -
Herz-Jesu-P8 30 30 60 09 0045 1073 5 19 -

(1) 2 for the Perona-Malik penaliser @ window size (3) iterations for the diffusion-like scheme
@) number of pyramid levels ) warps per pyramid level (©) iterations per warp

Table 1: Parameter settings for the different datasets and approaches.

€ =0.001. The remaining parameters were chosen individually for each dataset as listed in
Table 1. The parameter settings for the method of Galliani et al. [1] and Graber et al. [2]
are also given in Table 1. Regarding the method of Graber et al. we even optimised the level
depended parameter scaling function in the python code from

1 I 1 1.5

which led to a noticeable improvement of the results. In this context / denotes the current
pyramid level (the finest resolution is given on level [ = 0).

Parameter selection. In order to obtain good reconstruction results in general parameters
have to be adjusted properly. While the solver related parameters mainly effect the trade off
between reconstruction quality and runtime performance and thus can be set fixed in advance
(see above), the model parameters have direct impact on the quality and thus must be selected
more carefully. In this context, a convenient strategy is to first adjust the parameters of the
pure stereo model and then extend the parameter set to the parameters of the combined
model. From our experience the optimal model parameters may vary depending on the
intrinsic camera parameters as well as the distance of the scene to the camera. However,
even some of the model parameters turned out to be suitable for a wider range of images and
thus can also be set fixed in advance (see above). What remains to be adjusted are essentially
the hyper parameters for the different terms of the differential energy (see Table 1).
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3 Experiments

Apart from providing additional results for the three experiments in the main paper, we also
performed a fourth experiment that analyses the influence of the normalisation of the stereo
data term. To this end, we focussed on the pure stereo method and computed results for
the Blunderbuss Pete dataset with and without normalisation. The corresponding results are
depicted in Figure 1. They reveal that without normalisation artefacts arise at image edges —
even if one increases the amount of regularisation. This finding is in accordance with [6].

Let us now turn towards the additional results. Figure 2, Figure 3 and Figure 4 show
the input images as well as the computed albedo and illumination direction. Moreover,
Figure 5 and Figure 6 depict larger versions of the results of the corresponding experiments
in the main paper. Finally, Figure 7 and 8 show the reconstructed scenes from a different
perspective.

. T | |____ ~ 4 - i

Figure 1: Influence of the normalisation. From left to right: Pure stereo with normalisation.
Pure stereo without normalisation (o, = 5- 103, o, = 10%).

puted illumination direction. Bottom row: Match views (1,27,26,25).
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Figure 3: Real-world Fountain-P11 dataset [5]. Top row: Reference view (6), match view
(7). Bottom row: Computed albedo, Computed illumination direction.

Figure 4: Real-world Herz-Jesu-P8 dataset [5]. Top row: Reference view (5), match view
(6). Bottom row: Computed albedo, Computed illumination direction.
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Figure 5: Real-world Fountain-P11 dataset [5]. First row: Reference image, Ground truth.
Second row: Our combined approach, our pure stereo approach. Third row: Graber et al.
[2], Galliani et al. [1].
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Figure 6: Real-world Herz-Jesu-P8 dataset [5]. First row: Reference image, Ground truth.

Second row: Our combined approach, our pure stereo approach. Third row: Graber et al.
[2], Galliani et al. [1].
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Figure 7: Real-world Fountain-P11 dataset [S]. From top to bottom: Ground truth, our
combined approach, our pure stereo approach, Graber et al. [2], Galliani et al. [1].
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Figure 8: Real-world Herz-Jesu-P8 dataset [5]. From top to bottom: Ground truth, our
combined approach, our pure stereo approach, Graber et al. [2], Galliani et al. [1].
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