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Abstract

Shape from shading (SfS) and stereo are two fundamentally different strategies for
image-based 3-D reconstruction. While approaches for SfS infer the depth solely from
pixel intensities, methods for stereo are based on a matching process that establishes cor-
respondences across images. In this paper we propose a joint variational method that
combines the advantages of both strategies. By integrating recent stereo and SfS models
into a single minimisation framework, we obtain an approach that exploits shading in-
formation to improve upon the reconstruction quality of robust stereo methods. To this
end, we fuse a Lambertian SfS approach with a robust stereo model and supplement the
resulting energy functional with a detail-preserving anisotropic second-order smoothness
term. Moreover, we extend the novel model in such a way that it jointly estimates depth,
albedo and illumination. This in turn makes it applicable to objects with non-uniform
albedo as well as to scenes with unknown illumination. Experiments for synthetic and
real-world images show the advantages of our combined approach: While the stereo part
overcomes the albedo-depth ambiguity inherent to all SfS methods, the SfS part improves
the degree of details of the reconstruction compared to pure stereo methods.

1 Introduction
Reconstructing the 3-D surface of an object from one or more views of the same static scene
is one of the key problems in computer vision. Two of the most frequently used techniques
in this context are stereo and SfS. While stereo is based on finding corresponding pixels in
multiple views and determining the depth via triangulation, SfS estimates the depth solely
from a reflection model that relates the image brightness to the local surface normal – which
requires information on both the illumination and the albedo of the scene.

In fact, the advantages and drawbacks of the two techniques are quite complementary.
Stereo works well for textured objects, since this facilitates the matching process, while,
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at the same time, it requires spatial regularisation to compute estimates in homogeneous
regions. In particular in the presence of fine surface details, however, this regularisation
poses a problem as it tends to oversmooth the results. In contrast, SfS can produce detailed
reconstructions, since it hardly needs regularisation, however, serious problems are caused
by textured regions or equivalently by non-constant albedo, since the decomposition of the
observed brightness into albedo/colour and depth is ambiguous. This in turn makes it difficult
to apply SfS methods to real-world scenarios.

Given the advantages and drawbacks of both strategies, it seems natural to combine SfS
and stereo to improve the quality of the reconstruction. Since the first ideas of Blake et
al. [3] in 1985 a variety of methods for combining SfS and stereo has been proposed. The
corresponding literature can essentially be divided into three types of approaches.

Fusion Approaches. Such approaches perform stereo and SfS independently and combine
the results in terms of a post-processing step. Examples are, for instance, the method of
Cryer et al. [9] that fuses depths maps from stereo and SfS in the frequency domain, or
the approach of Haines et al. [16] that combines disparity information and surface normals
within a probabilistic approach. Since the computations are performed separately in the case
of fusion methods, the synergies between stereo and SfS are typically rather limited.

Subsequent Approaches. This type of approaches perform the stereo and SfS computa-
tion consecutively, where stereo provides an initialisation for SfS. Consequently, these tech-
niques can be considered as shading-based refinement methods. First approaches such as the
method of Leclerc et al. [22] and Hougen et al. [17] have been restricted to a simple ortho-
graphic camera model and a constant albedo, while assuming a global light direction and a
polynomially parametrised reflectance map, respectively. Following [12], we denote these
early techniques as view-centred, since they perform the refinement in the pixel domain.
Recently, however, so-called object-centred approaches have become increasingly popular.
Such methods operate directly on an initial closed 3-D mesh of an object. While they rely
on a preceding stereo approach to obtain the initial mesh, stereoscopic cues are only implic-
itly exploited during the refinement by imposing shading cues on multiple views. As in the
view-centred case, most of the object-centred approaches are based on the assumption that
the scene consists of a single material [38, 39, 41, 42]. They either focus on generalising
the reflectance model to non-Lambertian surfaces, e.g. by using the Phong model [41] or a
view-independent reflectance map [42], or they aim towards estimating the illumination, e.g.
by using spherical harmonics [38] or a general illumination vector field [39]. Among the few
exceptions regarding the single material assumption are the approach from Yoon et al. [40]
that estimates the reflectance of a dichromatic surface for a given illumination, and the ap-
proach of Valgaerts et al. [34] that exploits temporal constraints to cluster a spatially varying
albedo. As expected, in the case of subsequent approaches, the shading based refinement can
benefit significantly from the preceding stereo reconstruction. However, there is obviously
no direct feedback in the sense that stereo cannot take advantage from any shading cues.

Joint Approaches. In contrast to subsequent methods, joint approaches exploit stereo and
shading cues simultaneously when estimating the depth. For example, Fua et al. [12] pro-
pose to minimise an objective function that allows a slowly varying albedo, but assumes the
illumination to be known. Moreover, in the context of face reconstruction Samaras et al. [29]
developed a method that fits a face model to the stereo data and refines it while re-estimating
illumination and albedo. Although the two previous approaches make use of both shading
and stereo information during the refinement, they are still based on an initial stereo mesh and
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hence cannot be considered to be fully joint. A method that does not require such an initial
mesh is the level set approach of Jin et al. [19]. However, although the corresponding model
considers ambient light as well as an explicit background, it is restricted to two regions with
constant albedo as well as a global light direction. Moreover, also this approach cannot be
considered fully joint, since it relies on multi-view SfS and hence only exploits stereo cues
implicitly. Summarising, given the existing literature, it would be desirable to develop a fully
joint approach that combines stereo and shading cues explicitly and simultaneously estimates
depth, illumination and albedo from scratch (i.e. a general approach without initial mesh).

Contributions. In this paper, we present such a fully joint approach. We propose a novel
view-centred variational method that combines data terms from multi-view stereo and SfS
based on a separate parametrisation for depth, illumination and albedo. Moreover, we make
use of an anisotropic second-order smoothness term that enables the detail-preserving recon-
struction of non-fronto-parallel surfaces. As a result we obtain a rather general method that
allows to estimate high-quality depth maps of Lambertian scenes with varying albedo under
unknown illumination. Finally, we also propose a coarse-to-fine minimisation scheme based
on a linearisation of the data terms. This in turn allows the joint estimation of all unknowns.

Organisation. In Section 2 we derive our novel variational model for combining SfS and
stereo. The minimisation of the corresponding energy by means of an incremental coarse-to-
fine approach is then discussed in Section 3. Experiments on both synthetic and real-world
data are presented in Section 4. Finally, Section 5 concludes the paper with a summary.

2 Variational Model
In this section we introduce our variational framework which allows to jointly exploit shad-
ing and disparity cues. Our setting consists of n+1 perspective cameras Ci (i ∈ {0, ...,n},
n≥ 1), where we choose C0 to be the reference camera located at the origin of the coordinate
system. Let πi : R3→Ωi denote the perspective projection of a 3-D point on the image plane
Ωi ⊂ R2 corresponding to the camera Ci and let Ii : Ωi → R3 be the captured RGB colour
image. Moreover, let the unknown Lambertian surface S : Ω0 → R3 be parametrised as
S (x0) = (z · x0/f, z · y0/f, −z)> [20], where f denotes the focal length, x0 = (x0,y0)

> ∈Ω0
is the position on the reference image plane and z(x0) stands for the depth orthogonal to
the image plane. Finally, let the unknown illumination conditions be modelled in terms
of an illumination vector field l : Ω0 → R3 similar to the overall parametrisation of Xu et
al. [39] and let the vector-valued albedo (product of reflectivity and colour) be denoted by
ρ : Ω0 → R3. We then propose to compute the depth, the illumination vector field and the
albedo as minimiser of the following energy functional:

E (z, l,ρ) = Dstereo (z)+ν ·Dsfs (z, l,ρ)+αz ·Rdepth (z)+αl ·Rillum (l)+αρ ·Ralbedo (ρ) . (1)

It is composed of two data terms and three regularisation terms. While the stereo data term
Dstereo accounts for photo consistency between the reference image and the other views, the
SfS data term Dsfs relates the reference image and the reprojected image based on depth,
illumination, and albedo. In order to resolve ambiguities between the unknowns, the regu-
larisers Rdepth, Rillum, and Ralbedo have been added. Finally, the terms are balanced by the
weights ν , αz, αl, and αρ . Let us now discuss the data and the smoothness terms in detail.
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Stereo Data Term. For the multi-view stereo data term we consider the depth-parametrised
model of Robert and Deriche [28] based on the photo consistency (i.e. brightness constancy)
of projected surface points. This model is frequently used by recent stereo approaches, see
e.g. [1, 24, 31]. It is complemented by a gradient constancy assumption [5, 31], which may
account for slight illumination changes between subsequently recorded views. This yields

DStereo (z) =
∫

Ω0

1
n

n

∑
i=1

ΨL

(
‖I0(x0)− Ii(xi)‖2

2

)
+ γ ΨL

(
‖∇I0(x0)−∇Ii(xi)‖2

2

)
dx0 . (2)

Here, ∇ =
(
∂x0 ,∂y0

)> is the spatial gradient, xi = πi (S (x0)) denotes the projection of the
surface point S (x0) at the reference coordinates x0 onto the image Ii, and γ is a weight to
balance both terms. To improve the robustness of both assumptions with respect to outliers
and occlusions, we finally apply the robust function ΨL(s2)=

√
s2 + ε2 with ε > 0 [2, 6], that

penalises violations of the constancy assumptions less severely than in a quadratic setting.

SfS Data Term. Before we define the SfS data term, let us first review the corresponding
image formation process. This will lead us to the desired parametrisation in terms of depth,
albedo and illumination. Considering the rendering equation [18, 21] we obtain the following
Lambertian model for the RGB valued reference image

I0(x0) =
∫

Ω(s)
ρ(x0)L(s,ω)(ω>n)dω . (3)

Here, s = S (x0) denotes the surface point at position x0, n is the surface normal, Ω(s)
represents the unit hemisphere centred around n, ω is the negative incident light direction
and L(s,ω) stands for the incident radiance from direction ω at s. Following Xu et al. [39]
and integrating the contributions of the incident radiance over the angles of the hemisphere
we obtain the following compact parametrisation in terms of an illumination vector field l:

I0(x0) = ρ(x0)

(∫

Ω(s)
L(s,ω)ω dω

)>

︸ ︷︷ ︸
= l(x0)

n(x0) (4)

In contrast to [39], however, we do not assume the albedo to be constant and thus explicitly
separate it from the illumination vector field. This makes the resulting approach applicable to
more realistic scenarios where the albedo is spatially varying. Finally, we are in the position
to introduce the SfS data term. It is given by

Dsfs (z, l,ρ) =
∫

Ω0

‖I0(x0)−R(x0)‖2
2 dx0 , (5)

where R(x0) = ρ(x0)(l(x0)
>n(x0)) and where the surface normal n can be computed as the

cross product of the partial surface derivatives Sx and Sy, which yields [20]:

n(x0) =
v(x0)

||v(x0)||2
with v(x0) =

(
f · zx, f · zy,

(
∇z>x0

)
+ z
)>

. (6)

Depth Regularisation. In order to allow for slanted surfaces in the reconstruction, we refrain
from using a first-order regulariser that inherently favours fronto-parallel surfaces. Instead,
we resort to second-order smoothness terms that allow to model linear depth changes [20,
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27, 30, 35]. To be more precise, we make use of the anisotropic second-order regulariser of
Hafner et al. [15] that was originally proposed in the context of denoising and focus fusion. It
combines the edge preservation properties of second-order coupling models with directional
image information to guide the reconstruction. The corresponding smoothness term reads

Rdepth(z) = inf
u

∫

Ω0

(C(z,u)+αu ·S(u)) dx0 , (7)

with

C(z,u) =
2

∑
d=1

Ψd
C

((
r>d (∇z−u)

)2
)
, S(u) =

2

∑
d=1

Ψd
S

(
2

∑
m=1

(
r>mJ (u)rd

)2
)

, (8)

where r1 and r2 are orthogonal unit vectors that correspond to the dominant directions of the
local structure of the reference image I0 =

(
I1
0 , I

2
0 , I

3
0
)>, respectively. These directions can

be computed as eigenvectors of the colour structure tensor [10, 11]:

J := Kσo ∗
3

∑
c=1

(
∇(Kσi ∗ Ic

0) ∇(Kσi ∗ Ic
0)
>
)
, (9)

where Kσi and Kσo are spatial Gaussians with standard deviation σi and σo for presmoothing
and local integration, respectively, and ∗ is the convolution operator.

Let us now detail the two terms in (7) that are balanced by αu: While the coupling term
C connects the gradient ∇z of the depth field to a coupling variable u, the smoothness term
S ensures that the Jacobian J (u) of this coupling variable is small. Evidently, this strategy
realises a second-order smoothness constraint on z. In fact, for the special case u = ∇z,
the smoothness term S actually penalises the second-order directional derivatives zr1r1 , zr1r2 ,
zr2r1 and zr2r2 . In this case, the resulting regulariser comes down to a second-order extension
of the anisotropic complementary smoothness term of Zimmer et al. [44].

So far, we have discussed how second-order regularisation can be realised by using
an auxiliary variable u. Let us now explain how to achieve the desired anisotropic detail-
preserving behaviour. Main concept in this context is the separate sub-quadratic penalisation
of the two directions r1 and r2 in the coupling term (via Ψ1

C, Ψ2
C) and in the smoothness

term (via Ψ1
S, Ψ2

S), respectively. This not only adapts the regularisation to the local image
structure by considering the directions r1 and r2 from the structure tensor J, it also allows
to preserve edges in both directions independently. This in turn allows to handle important
scenarios such as corners (two edges), edges (one edge) and homogeneous areas (no edge).

Applying the separate penalisation to the smoothness and to the data term has different
effects. While applying separate penalisation to the smoothness term yields an anisotropic
regularisation of the auxiliary variable u, applying it to the coupling term gives a second
order anisotropic regularisation of the depth z. In the latter case only deviations from ∇z
are penalised that cannot be explained by a piecewise constant (smooth) auxiliary variable u.
Such a piecewise constant (smooth) auxiliary variable u in turn corresponds in to a piecewise
affine depth z which makes once again the second-order regularisation explicit. As penalising
functions we chose the edge-enhancing Perona-Malik penaliser [25] Ψ1

C(s
2) = Ψ1

S(s
2) =

λ 2 log
(
1+ s2/λ 2

)
along the dominant direction (i.e. in r1-direction) and the edge-preser-

ving Charbonnier penaliser [7] Ψ2
C(s

2) = Ψ2
S(s

2) = 2λ 2(1+ s2/λ 2)1/2 orthogonal to it (i.e.
in r2-direction); see e.g. [36]. In both cases, λ plays the role of a contrast parameter.
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Illumination Regularisation. As shown by Xu et al. [39] the illumination vector l is typ-
ically piecewise constant or only varies smoothly across the surface. Based on this finding
we use the following isotropic first-order regulariser

Rillum (l) =
∫

Ω0

ΨI

(
‖J (l)‖2

F

)
dx0 , (10)

where J (l) denotes the Jacobian of l, ‖·‖F is the Frobenius norm and ΨI represents the
edge-preserving Charbonnier penaliser.

Albedo Regularisation. A common assumption in the field of intrinsic image decomposi-
tion is that pixels with similar chromaticity are likely to share a similar albedo [8]. Since
we are interested in separating albedo from geometry and illumination, we follow this idea
and make use of an isotropic first-order smoothness term which reduces smoothness at chro-
maticity edges. This is achieved using a positive, decreasing weighting function g applied
to the Frobenius norm of the chromaticity Jacobian, which serves as fuzzy edge detector for
chromaticity edges. Hence we obtain

Ralbedo (ρ) =
∫

Ω0

g
(
‖J (ch(I0))‖2

F

)
· ‖J (ρ)‖2

F dx0 , (11)

where ch(I0) = I0/(I1
0+I2

0+I3
0 ) denotes the rg-chromaticity, J (ch(I0)) is the chromaticity

Jacobian and g(s2) = 1/(1+s2/λ 2) is the Perona-Malik diffusivity [25]. Since g(s2)≈ 0 for
large arguments s2� λ 2, jumps in the albedo are mainly aligned with chromaticity edges.

3 Minimisation
Differential Formulation. In order to minimise the non-convex energy functional in (1), we
propose the use of an incremental coarse-to-fine fixed point strategy [5]. To this end, we ap-
proximate the original model by a series of differential energies. Given the known values zk,
lk, ρk and uk from a coarser resolution level, we thereby compute the unknown increments
dzk, dlk, dρk and duk at each resolution level k. The differential formulation of the energy is
derived as follows: In case of the stereo term we first linearise w.r.t. the depth increment and
then introduce a constraint normalisation similar to [32, 44]. Regarding the SfS term we fol-
low the recent work of Maurer et al. [23] and apply an upwind scheme approximation before
performing the linearisation w.r.t. all unknowns. In contrast to the much simpler model of
[23], however, we must additionally consider albedo and illumination when performing this
linearisation. For the smoothness terms the differential formulation is straightforward. It es-
sentially follows from the definition of the increments; see [5]. Finally, to ensure robustness
w.r.t. large erroneous increments (e.g. if the linearisation is locally not valid), we extend our
differential model by adding quadratic regularisation terms for the increments length. For
more details regarding the differential formulation we refer to the supplementary material.

Numerical Solution. The resulting differential energy has to be minimised on each resolu-
tion level. To this end, the corresponding Euler-Lagrange equations are derived and discre-
tised on a rectangular grid. Following [23], the derivatives of the linearised SfS term are com-
puted numerically. Regarding the anisotropic depth regulariser we discretise the resulting di-
vergence expressions as in [37]. For the remaining derivatives standard finite differences are
used. Since the resulting system of equations is non-linear – due to the derivatives of the sub-
quadratic penaliser functions ΨL, Ψd

C,Ψd
S and ΨI – we employ a second fixed-point iteration
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in order to obtain a linear system of equations, where all the non-linear expressions are kept
fixed; see [5]. Finally, the linear systems of equations are solved using the SOR method.

Implementation Details. Since we regularise the length of the increments, a single linearisa-
tion per resolution level is not sufficient. Hence, we perform several fixed point iterations per
level. Moreover, at the coarsest level we initialise the depth z with a fronto-parallel plane, the
illumination vector l with zero (not to prefer any particular direction), and the albedo ρ with
the downsampled input image. Finally, to account for the fact that the zero initialisation of
the illumination vector does not allow the SfS data term to provide any useful information at
coarser levels, we introduce a weighting function that increases the SfS weight ν at finer re-
solutions. Also in this case we refer the reader to the supplementary material for more details.

4 Experiments
Experimental Setup. Experiments have been performed with a C++ implementation run-
ning on a single core with 3.40GHz on a standard desktop PC with Intel Core i7-2600 CPU.
Using the parameters given in the supplementary material the runtime has been in the order
of 1h 40m for input images of size 1536x1024.

Synthetic Data. In our first experiment, we compare the reconstruction quality of our com-
bined approach with that of a pure stereo variant which is obtained by omitting the SfS term
as well as the illumination and albedo regularisers. To this end, we created a synthetic dataset
of Blunderbuss Pete with some artificial procedural Voronoi texturing using Blender. It con-
sists of three views and the scene is illuminated by two distant light sources. The dataset
comprises fine surface details and subtle geometry which pose a challenging task.

The reference image, the ground truth as well as the results for the pure stereo method
and the combined approach are depicted in Figure 1. As one can see, the combined approach
reconstructs fine surface details such as the eye and the beard much better than the pure
stereo method that yields a somewhat coarser result. Moreover, the estimated albedo and the
computed illumination direction in Figure 1 look quite reasonable. Thus it is not surprising
that the clear visual improvement is also confirmed by a slight decrease of the root mean
square (RMS) error of the computed depth maps: While the pure stereo method yields an
error of 19.52 ·10−5, the combined approach achieves 19.30 ·10−5. In this context, one has to
keep in mind that the improvement lies mainly in the reconstruction of small surface details.

Real-World Data. In order to investigate the performance of our approach when recon-
structing real scenes and objects, we also conducted two experiments with real-world data.
For our first experiment we used the Angel dataset from Wu et al. [38]. Once again, we com-
puted results for our pure stereo method and for our combined approach, this time based on
five views. Moreover, we added the results of the approach of Wu et al. [38] for comparison
– a method that refines a pre-computed multi-view stereo mesh using shading information.

Once again, the corresponding reconstructions in Figure 2 show that the pure stereo vari-
ant is not able to capture all fine details such as the strands of hair, the disc area of the
sunflower head or the toes. The method of Wu et al. does better, however, the overall re-
construction is far more smoothed. In particular, coarse structures such as the sunflower
petals pointing towards the camera or the ringlet are over-smoothed. In contrast, our com-
bined approach is able to recover both coarse and fine scale details accurately. This becomes
particularly obvious when comparing our results to the reference input image.
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Figure 1: Synthetic Blunderbuss Pete dataset. First row, from left to right: Reference input
image, computed albedo, computed illumination direction. Second and third row, from left
to right: Shaded images showing the ground truth, pure stereo and our combined approach.

For our second real-world experiment we used the Fountain-P11 and the Herz-Jesu-P8
images of the Strecha dataset [33] for which the ground truth is available. Since the recovery
of fine details strongly depends on the sharpness of the input data, we downsampled the
slightly blurred images to half the resolution before reconstructing the scenes from only two
views. This time, apart from the results of our combined method and its stereo variant, we
also provide results for two recently proposed stereo approaches which are able to handle
arbitrary camera settings and which provide source code publicly: On the one hand, we used
the variational method of Graber et al. [14] that is based on minimal-surface regularisation.
For the given data set this method has shown significant improvements compared to standard
TV regularisation. On the other hand, we considered the basic approach of Galliani et al. [13]
which is a multi-view variant of PatchMatch Stereo [4]. While Galliani et al. also proposed
a final 3-D integration step in terms of fusing multiple reconstructions from different views,
we had to omit this step here, since we focus on the computation of a single depth map.

Qualitative results for the Fountain-P11 are depicted in Figure 3. While the multi-view
PatchMatch method of Galliani et al. recovers major jumps very accurately, the correspond-
ing reconstruction lacks fine details and contains significant outliers in occluded regions. The
latter observation is a direct consequence of the lacking regularisation of the PatchMatch al-
gorithm. In contrast, the approach of Graber et al. yields a more detailed reconstruction that
is, however, very noisy. This in turn is a consequence of the minimal-surface regularisation
that tends to round-off objects when suppressing local fluctuations and thus only preserves
surface details if the amount of regularisation is chosen sufficiently low. In comparison, the
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Figure 2: Real-world Angel dataset [38]. Top left: Reference image. Top right: Wu et al.
[38]. Bottom left: Our pure stereo approach. Bottom right: Our combined approach.

reconstruction of our pure stereo method is already quite accurate. While flat surfaces are
almost noise free, details of the fountain and the wall are more pronounced. This clearly
shows the benefits of the edge-preserving anisotropic second-order regularisation. The vi-
sually most appealing reconstruction, however, is achieved by our combined approach. It
recovers even fine scale details such as the mouth of the fish and the ornaments of the foun-
tain. This in turn demonstrates the usefulness of shading information. Our findings are
confirmed by the quantitative comparison of the results in Table 1. It shows that the RMS
errors of our methods are significantly lower than those of the other two approaches both
for the Fountain-P11 as well as for the Herz-Jesu-P8 data set. More results such as the
Herz-Jesu-P8-reconstructions can be found in the supplementary material.

Fountain-P11 Herz-Jesu-P8
method all non-occluded all non-occluded

Graber et al. [14] 0.0688 0.0367 0.2217 0.0535
Graber et al. (CUDA) 0.02641 - - -
Galliani et al. [13] 0.6124 0.0157 3.2813 0.9632
Ours (stereo) 0.0168 0.0023 0.0706 0.0328
Ours (stereo + SfS) 0.0134 0.0022 0.0695 0.0325

Table 1: RMS error for the Fountain-P11 and Herz-Jesu-P8 dataset.

1 While the publicly available Python code does not achieve such low errors – even with optimised parameters
– they have been reported for the non-publicly available CUDA code (for full resolution images) [14].
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Figure 3: Real-world Fountain-P11 dataset [33]. Two-view results. Top left: Reference
image. Top centre: Ground truth. Top right: Our combined approach. Bottom left: Our
pure stereo approach. Bottom center: Graber et al. [14]. Bottom right: Galliani et al. [13].

5 Conclusions and Outlook
In this paper we have proposed a novel variational method for combining shape from shad-
ing and stereo. In this context, our contribution was fourfold: (i) We showed how shading
and disparity information can be integrated explicitly into a joint minimisation framework
for estimating the depth. In contrast to most existing approaches we thereby refrained from
using any form of stereo-based pre-estimation. (ii) We made use of an adaptive anisotropic
second-order smoothness term. This term further encouraged the detail-preserving recon-
struction of non-fronto-parallel surfaces. (iii) We extended this model in such a way that
it additionally allows to estimate albedo and illumination. This made our approach appli-
cable to more general scenarios including Lambertian objects with non-uniform albedo and
scenes with unknown illumination. (iv) We derived a coarse-to-fine minimisation framework
based on a linearisation of all data terms. This in turn enabled the application of standard
optimisation techniques such as nested fixed point iterations. Experiments for synthetic and
real-world images demonstrate that our combined approach allows for accurate and detailed
reconstructions. Moreover, they show that shading information is indeed useful to improve
upon pure stereo, in particular when it comes to the reconstruction of small-scale details.

Future work includes the use of more advanced reflection models, e.g. the Phong model
for handling specular reflections [26], as well as the fusion of multiple depth maps to obtain
a single high resolution reconstruction, see e.g. [13, 43].
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