
P. SUDOWE, B. LEIBE: PATCHIT 1

PatchIt: Self-Supervised Network Weight
Initialization for Fine-grained Recognition

Patrick Sudowe
sudowe@vision.rwth-aachen.de

Bastian Leibe
leibe@vision.rwth-aachen.de

Visual Computing Institute
RWTH Aachen University
Germany

Abstract

ConvNet training is highly sensitive to initialization of the weights. A widespread
approach is to initialize the network with weights trained for a different task, an auxil-
iary task. The ImageNet-based ILSVRC classification task is a very popular choice for
this, as it has shown to produce powerful feature representations applicable to a wide va-
riety of tasks. However, this creates a significant entry barrier to exploring non-standard
architectures. In this paper, we propose a self-supervised pretraining, the PatchTask, to
obtain weight initializations for fine-grained recognition problems, such as person at-
tribute recognition, pose estimation, or action recognition. Our pretraining allows us to
leverage additional unlabeled data from the same source, which is often readily avail-
able, such as detection bounding boxes. We experimentally show that our method out-
performs a standard random initialization by a considerable margin and closely matches
the ImageNet-based initialization.

1 Introduction

ConvNets have been successfully applied to a large number of tasks in Computer Vision.
A popular approach is to start training with a weight initialization obtained by training on
the ImageNet-based ILSVRC classification task. This results in a two-phased procedure
which has produced superior results on a large variety of tasks (c.f. [2, 5, 6, 14, 17, 21]).
Here, the ImageNet classification task serves as an auxiliary task. Supervised learning on
this auxiliary task (pretraining phase) yields the initialization for training the final model
(fine-tuning phase).

This setup has grown popular, mostly because successful architectures in combination
with publicly available weights promise good results quickly. Unfortunately, this creates a
lock-in situation, so that the fine-tuning popularity causes considerable frustration: Archi-
tectures such as AlexNet [11] or VGG [15] have been designed for the ImageNet task and
need not be optimal for other tasks with differing domains. However, when using pretrained
weights, it is hardly possible to modify the network architecture. Even small changes, like
switching non-linearities or adapting the input sizes, render the publicly available weights
useless. Certainly, one could pretrain an adapted net on the ImageNet-based ILSVRC clas-
sification task, but this is extremely costly in terms of time and hardware resources. If one

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 75.1-75.12

DOI: https://dx.doi.org/10.5244/C.30.75

https://dx.doi.org/10.5244/C.30.75


2 P. SUDOWE, B. LEIBE: PATCHIT

instead starts out with a random initialization of the weights, performance often drops sig-
nificantly. As a consequence, such modifications are rarely explored. Therefore, it seems
that much of the flexibility in deep nets is not leveraged currently.

This paper presents an alternative pretraining method – the PatchTask – which provides
a viable alternative to ImageNet pretraining. The core idea is to leverage data from the
same domain as the target task for pretraining. The pretraining is self-supervised, i.e., it
solely relies on automatically generated rather than human annotated labels. We target fine-
grained recognition tasks that appear in person analysis applications (e.g., pose estimation,
re-identification, action and attribute recognition). Their common aspect is that they make
predictions for an object that has been located before (e.g., by a detector). So, we will assume
such a specific input domain.

The PatchTask idea is inspired by the work of Doersch et al. [3], who propose an aux-
iliary task defined by the spatial layout of pairs of patches. In contrast to their work on
general images, we focus on fine-grained recognition, where the input images come from a
restricted data domain (i.e., bounding boxes showing persons). In this restricted setting, it
is feasible to directly predict the original location of single patches (Fig. 1). The application
scenario in this work is to predict pedestrian attributes from the PARSE-27k dataset [17],
such as gender or whether the person is carrying a bag. Here, the data domain is bounding
boxes produced by a pedestrian detector. The representations learned here could directly be
applied to other person analysis tasks, such as re-identification, action recognition, or pose
estimation. However, the patch task pretraining approach is general and extends to any task
defined over detection bounding boxes.

Our approach makes it possible to leverage additional unlabeled data in a very natural
way. In practice, one can often easily obtain more unlabeled data from the same data source
(i.e., domain) as the target task. For example, it is easy to collect additional detection bound-
ing boxes. One can then define an auxiliary task on this data and perform a regular training.
The assumption is that the network has to pick up some of the structure of the input data,
in order to solve the auxiliary task. Accordingly, the obtained weights can serve as a good
initialization for the target task.

This paper makes the following contributions: (1) We describe a family of self-supervised
patch tasks for fine-grained analysis. (2) We demonstrate and evaluate their use for human
attribute recognition, where we achieve state-of-the-art performance without using external
labels (in particular, without ImageNet). This facilitates further exploration of architectures.
(3) We provide data for person analysis pretraining and supporting code that may be used to
improve person representations in other ConvNet architectures.

2 Related Work
Weight initialization is important for solving the non-convex optimization problem inherent
in training deep networks. Historically, there are three general approaches to initialization:
sampling random weights, unsupervised pretraining (e.g. based on reconstruction error), and
transferring weights from auxiliary tasks.

The fastest method is to start with a random weight initialization, which can be tricky
in particular for very deep networks. For example, Simonyan et al. report a multi-stage
procedure to iteratively train their popular VGG16 network, adding groups of layers each
time [15]. The problems were caused by vanishing or exploding gradients due to bad scaling
of the activations, which grow worse with network depth.



P. SUDOWE, B. LEIBE: PATCHIT 3

…

1716 18

1513 14

10 1211

7 8 9

4 5 6

1 2 3 5

patch 

label 
+ 

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

I. Pretraining - Patch Phase II. Target Task Training

…

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

co
nv

 +
 p

oo
l

random
samples

…

K

Figure 1: Patch Task: Classify the extraction position given one 32×32 pixel patch. During
the pretraining phase, the model needs to encode local patch structure. The parameters are
transferred to the target task net. Subsequent fine-tuning benefits from a better initialization.

A closer inspection of the activation distributions within the network gave rise to im-
proved initialization strategies. Glorot et al. proposed a method that scaled weight variance
according to a layer’s fan in and fan out [7]. Their approach was refined by He et al. by
adapting the variation for the popular ReLU non-linearity [9]. This enabled them to train
extremely deep networks with more than one hundred layers.

Another, more complex, initialization option is pretraining. On a more general note, Er-
han et al. discuss unsupervised pretraining as a means to improve deep learning methods [4].
They find that pretraining induces a regularizing effect on the models, although their work
does not specifically address ConvNets. Unsupervised pretraining has been used to initialize
hierarchical feature representations [13]. Another option is to use a reconstruction task in
combination with variants of autoencoders [18]. Instead of using such unsupervised pre-
training, one can transfer a representation learned for a different task. Yosinski et al. show
the efficacy of transferring weights from auxiliary tasks [20]. The main motivation is that
the training paradigm in pretraining is essentially the same as training for the target task, and
as such is well understood. Several authors observe that the ImageNet weights, even without
task specific fine-tuning, yield a good feature extractor for a variety of tasks [8, 12, 14]. In
general, however, it seems to be more promising to adapt the weights by fine-tuning, i.e., by
training the full network on the target task [1, 6, 15, 17, 20, 21]. Initializing with ImageNet
weights is very popular, but it has limitations, which has led to a growing interest in alterna-
tives. The main limitation is that the network architecture cannot be changed easily, if one
wants to leverage the available weights.

This gives rise to the more recent approaches of self-supervised initialization. Wang
et al. learn a representation by tracking objects through videos [19]. Doersch et al. work
on images and learn to predict relative spatial positioning of pairs of patches[3]. Both of
those approaches make use of large sets of images or videos. Hence, they are learning
representations for very general settings. In contrast, we aim at leveraging self-supervised
learning for a specific domain for which there is often an abundance of unlabeled data from
the same source is available. This is particularly attractive for small training sets, where deep
networks tend to overfit. In practice, this is a scenario often encountered, as it is costly to
annotate examples.



4 P. SUDOWE, B. LEIBE: PATCHIT

3 Method: Patch Task

In this section, we introduce the details of the PatchTask pretraining. The core idea is to
make the network learn about the structure in the images without using ground truth labels
from the target task. The auxiliary task is self-supervised, i.e., trained on automatically
generated labels. The immediate advantage is that some learning can occur already without
any danger of overfitting on the target task labels. Furthermore, one can often easily obtain
more unlabeled data from the same source. Such additional data can be incorporated directly
in a self-supervised pretraining step. The challenge is to define a self-supervised auxiliary
task which is hard enough to force the model to pick up relevant structure in the images.

To this end, we propose the PatchTask: Given a square patch of pixels from the input, the
task is to predict its origin out of K possible locations. The locations are discrete positions
within the input image (c.f. Fig. 1). This is a K-class classification problem. Similarly to
placing pieces in a jigsaw puzzle, knowledge of the whole picture facilitates placing indi-
vidual pieces. Hence, we expect that the network will pick up structure of the images while
learning to solve the patch task.

We train train the PatchTask model by iterating over all training images and randomly
extracting one patch from the K possible positions. The starting weights are randomly ini-
tialized following the method of He et al. [9]. Note that the resulting parameters can be
transferred to the final net (i.e., for the target task) without changes (blue box in Fig. 1), as
the convolution parameters are independent from the input size.

We use patches of size 32× 32. Observable structure is already present in a window as
small as this. A larger patch size would decrease the number of non-overlapping patches that
could be placed into the input images, thereby making the classification task easier. The 32×
32 patch size allows for a maximum of five groups of convolution layers each followed by a
2×2 max-pooling layer. This matches the setup of the popular VGG16 network architecture.
So, it is possible to use the PatchTask to obtain an initialization for the convolutional layers of
VGG16. Following common interpretation, these layers form a hierarchical representation
of the data. We believe that learning this representation from the target domain should be
superior to a representation learned on unrelated images (i.e., ImageNet images).

In this work, we focus on input images which are pedestrian detection bounding boxes.
While our experiments will evaluate the final performance on the attribute recognition task
defined by the PARSE-27k dataset [17], the patch task described here is equally applicable
to other fine-grained recognition tasks. The only prerequisite is that the input images need
to have some structure – e.g., they all contain detections of a particular class of objects.

3.1 PatchTask Variants

There are many possible variants of the PatchTask. The individual patches should not overlap
too much, which given a patch size limits the maximum number of patch locations. However,
less locations yield a different, possibly easier, classification problem. In contrast, the larger
the patch size, the more structure can potentially be discovered within. During training, the
patches are sampled randomly. To further augment the training set one can introduce small
random shifts of the patch locations (i.e., jitter).

From the design space described above, we have selected four variants for detailed anal-
ysis – PatchTask18, pairwise PatchTask18, PatchTask8, and PatchTask8+margin (Fig. 2). In
our experiments, all input images are 100× 200 pixels. A grid of 3× 6 patches fills the



P. SUDOWE, B. LEIBE: PATCHIT 5

1716 18

1513 14

10 1211

7 8 9

4 5 6

1 2 3

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

(6,10)

Figure 2: Variants explored in our experiments – from left to right example input image,
PatchTask18, pairwise PatchTask18, PatchTask8, PatchTask8+margin. 18 patches fit tightly
into the input image. 8 patches allow optionally for a margin, which enables a heavier data-
augmentation by adding random noise to the positions (jittering). To predict the extraction
location of a patch, a model needs to learn a representation of local structure within the
patches. We leverage this for the target task.

space almost fully, and results in an 18-class classification problem – PatchTask18. Consid-
ering that the most relevant content, the person, is usually close to the bounding box center,
it might make more sense to focus on this area. This idea leads to a 2× 4 grid, centered
both horizontally and vertically – PatchTask8. For these variants, we use a small amount
of random noise (±4 px in both directions) on the positions to augment the training dataset
(i.e., jitter). As the 8 patch configuration does not cover the image fully, it is possible to
introduce a margin between the patch positions and add a stronger jitter (±12 px). We name
this variant PatchTask8+margin. This is a form of data augmentation, which leads to a larger
number of training examples. In addition to those single-patch variants, we also evaluate a
pairwise task – pairwise PatchTask18 – which tries to estimate the relative location of pairs
of patches, similar in spirit to the task proposed by Doersch et al. [3].

4 Evaluation
The ultimate objective of the PatchTask is to provide a good initialization for a target task.
We adopt the attribute recognition task from the PARSE-27k dataset [17] for our evaluation,
which forms an ideal testbed for several reasons. First, since person analysis is an interesting
application area, an approach to learn a good representation may be leveraged directly for
other similar tasks such as pose estimation. Moreover, the PARSE-27k dataset is based on
video sequences, where only persons from a subset of the frames have been labeled. Only
the detections of every 15th frame have been annotated with attribute labels. However, we
can leverage additionally all unlabeled detection bounding boxes for the PatchTask training.
Note that the PARSE-27k dataset assigns each video sequences to exactly one dataset split,
i.e., training, validation, and test. Hence, we use all detection boxes from the training set’s
video sequences, regardless of whether attribute labels are present or not. This amounts to
a total of 244,584 examples, with K possible extraction locations each. These bounding
boxes are raw detector output, i.e., there was no additional manual supervision. Thus, the
overall procedure is self-supervised. The occasional false positive detections do not hurt the



6 P. SUDOWE, B. LEIBE: PATCHIT

PatchTask.
The main questions we want to answer with the following experiments are the follow-

ing: (1) Is pretraining with PatchTask beneficial in comparison to a random initialization?
(2) How do variants of the PatchTask influence target task generalization? (3) What is the
accuracy achieved on the PatchTask?

4.1 Experimental Setup
All of the experiments presented below are based on the same architecture: VGG16 from
[15]. For our experiments, we use the groups of convolutional and max-pooling layers, but
omit the fully connected last layers. This means the base net has 13 convolutional layers with
weights. The base net is extended by corresponding layers for the PatchTask prediction or
for the attribute task, accordingly. Unless stated otherwise, we use the following experiment
parameters: We use standard batch-wise stochastic gradient descent (SGD), wth learning rate
0.001 and Nesterov updates with momentum 0.9. For simplicity, we use a constant learning
rate throughout the process and also keep the same for both pretraining and the fine-tuning
phase.

Patch Task. Patch Training is continued until the accuracy on the validation set plateaus.
We prepare one fixed validation set of patch + label pairs for each of PatchTask8 and 18.
All experiments use the same validation set. Sec. 4.2 reports accuracy on the validation set.
We abort training after a plateau has been reached and use the model snapshot (taken after
each training epoch) with best validation error for fine-tuning. Training runs within 12-24
hours on a standard GPU (GTX 980Ti). Note that this is significantly less than the training
time required for the ImageNet task, or the procedure proposed by Doersch et al. [3], which
ran for weeks on the ImageNet data. We find that the PatchTask accuracy sometimes does
further improve with longer running training sessions. But one motivation of this work is
to save time, and thus we abort PatchTask training after 150-200 epochs, unless indicated
otherwise.

Fine-tuning. After the patch training phase, we perform the same fine-tuning procedure for
the PARSE-27k attributes in all experiments. This means the network adaptation is identical
across all experiments. On top of the first layers, which remain unchanged, we add one
shared layer of 512 densely connected units and one loss layer for each attribute. This
follows roughly the same procedure as Sudowe et al. [17], who published the dataset. We
report the test set mAP score of the model with best mAP score on the validation set. For the
score computation, we follow the evaluation protocol suggested by the dataset publishers.

Random Initialization. There are several popular variants to randomly initialize network
weights. The most widely used ones are the methods proposed by Glorot et al. [7] (some-
times called Xavier) and more recently He et al. [9]. The latter proposes to scale standard
deviation by a factor of

√
2 to adapt to the expected value of the ReLU non-linearity. As

all of the networks used in our experiments use ReLU, we adopt this initialization. We find
that, with these settings, training does converge with this random initialization even for our
relatively deep models with 15 or more layers.

4.2 Patch Task Accuracy
We first report some details on the accuracy on the PatchTask itself. Naturally, it is not clear
that a high patch-level classification accuracy will translate to an equally successful target



P. SUDOWE, B. LEIBE: PATCHIT 7

Task Accuracy
Patch Task 8 81.16%
Patch Task 8 + margin 80.72%
Patch Task 18 67.75%

Table 1: Accuracy of the different PatchTask variants on their respective task – PatchTask 18
has more classes, so the accuracies are not comparable to PatchTask8. There is only a slight
difference for the additional margin. These numbers show that the models successfully learn
to predict patch locations, i.e., they learn to represent the input domain.

Model Initialization mAP
AlexNet [17] ImageNet 63.6%
VGG Random He 67.70%
VGG ImageNet 73.60%
VGG PatchTask18 72.66%
VGG PatchTask8 71.14%
VGG PatchTask8+margin 72.76%

Table 2: PARSE-27k Results (mAP). Comparison of different initialization methods. VGG-
based networks outperform earlier work. The PatchTask initializations improve clearly over
random initialization (method of He et al. [9]), showing the merit of self-supervised pretrain-
ing. Our proposed methods PatchTask18 and PatchTask8+margin get very close to the more
costly ImageNet initialization, but use no external labels.

task model. However, it is a first indication of whether PatchTask training has managed to
produce a meaningful representation of some inherent structure within the data. Tab. 1 shows
the accuracies on the patch classification task. We report the accuracy on a set of 100,000
patches extracted from detections on the PARSE-27k validation set. This ensures that the
validation set does not overlap with the training set, as the PARSE-27k training and validation
sets are comprised of separately recorded video sequences. For both tasks, the final models
reach accuracies well beyond the prior probabilities. We use the same validation set across
experiments for a given PatchTask.

Doersch et al. mention problems of overfitting due to chromatic abberations (CA), i.e.,
shortcuts found by the pretraining, which do not help the final task. We do not observe
similar overfitting behavior. Initially, we randomly dropped color channels as suggested by
[3]. However, it turned out that this was not necessary on the data used here, so we abandoned
this strategy. The reason could be that the detection boxes used in our work may originate
from anywhere in the original camera frame, so the patch location does not directly correlate
with lense effects such as CA.

4.3 Target Task Results
The ultimate objective is to create the best performing model on the target task. So the results
presented next evaluate the PatchTask variants with respect to the final performance in terms
of target task mAP (we adhere to the datasets evaluation procedure [17]).

Single Patch Task. Tab. 2 shows the evaluation results on the target task (i.e., binary
attribute recognition). First, it is obvious that the network architecture is key to good perfor-



8 P. SUDOWE, B. LEIBE: PATCHIT

Model Initialization mAP #epochs
VGG Random He 67.70% 40
VGG BN Random He 67.32% 28
VGG PatchTask18 72.67% 43
VGG BN PatchTask18 70.48% 21

Table 3: Batch Normalization Effect: We observe much faster convergence, but the final
performance is slightly better for the models without BN.

mance. The previously published result of 63.6% mAP is based on the AlexNet architecture
[17]. This is easily outperformed by the VGG architecture, even trained with randomly ini-
tialized weights, for which we observe 67.7% mAP. Note that this result is for a random
initialization following He et al. [9]. We found that the scaling proposed by He et al. to
account for the ReLU non-linearity yields better results. This large difference among the ar-
chitectures underlines our goal of facilitating quick turnaround time in network exploration.

All three PatchTask variants improve over the random initializations. The best result, ob-
tained with PatchTask8+margin, clearly improves results by 4 percentage points to 72.76%
mAP. The results of PatchTask18 and PatchTask8+margin are very similar, yet the subse-
quent fine-tuning procedure on the PatchTask18 initialization converges considerably faster
(21 vs. 42 epochs). Although based on a much faster training procedure, both PatchTask8
and PatchTask18 manage to come within 1% mAP of the performance obtained by costly
ImageNet pretraining. Thus, both tasks present viable alternatives.

Pairwise Patch Task. In order to connect our work to Doersch et al. [3], who work on pairs
of patches and their relative positions, we adapt our PatchTask18 to predict a pairwise patch
location configuration (Fig. 2). The setup is not identical, but similar to the setup originally
proposed by Doersch et al. Effectively, this uses two independent patches from the same
training example. Hence, a model might benefit from modeling more complex dependencies,
where prediction of single patch locations is limited to the local structure within one patch.
Here, we sample a pair of patches per input image, which leads to a K×(K−1) classification
problem. Initial experiments showed no benefit of the pairwise patch prediction compared
to the single patch setup in our scenario. An experiment with Batch Normalization and
without DropOut resulted in 63.98% and 64.06% mAP for single and pairwise PatchTask,
respectively. The pairwise setup needs more iterations for convergence and each takes longer
for each iteration as more data has to be processed. We therefore suggest to use the more
direct single variant in scenarios where it is applicable, i.e., whenever the input domain is as
controlled as in fine-grained recognition tasks.

4.4 Detailed Analysis

In this section, we present experiments addressing particular interesting aspects of the method.

Effect of Batch Normalization. Batch Normalization (BN) is an established technique to
improve the training process by normalizing intermediate activations [10]. BN introduces
additional parameters, a shift and scale, for each activation. Thus, training becomes slightly
slower, which is countered by a better convergence behavior.

We ran extensive experiments with BN for the activations of each convolutional layer.
Tab. 3 presents the BN results. We consider two weight initializations, random and Patch-



P. SUDOWE, B. LEIBE: PATCHIT 9

Task18. In both cases, BN reduces the required number of training iterations significantly (43
vs. 21 epochs). But also in both cases, the final performance drops, unfortunately (72.67%
vs 70.48% and 67.70% vs 67.32%). At least in our experiments, we could not observe a clear
advantage of applying BN, despite the time savings. This may be an artefact from our small
batch size of 8 to 16 for the fine-tuning step. Due to memory limitations in the available hard-
ware, we could not use a larger batch size in our experiments. This is a direct consequence
of using the VGG16 network, which we chose in order to compare our results to ImageNet
pretraining (i.e., publicly available weights). Our PatchTask makes it much easier to explore
the potential of smaller networks by reducing the turnaround time. We expect applications
in fine-grained recognition to benefit greatly from more specialized network architectures,
and it is likely that BN can again provide an advantage for those.

Effect of DropOut. In the same series of experiments with batch normalization in training
as before, we also evaluated the effect of DropOut (as described in[16]). We find that gen-
eralization benefits from this, which is unsurprising and in line with results in the literature.
All of the results shown in Tab. 2 are obtained with DropOut (Bernoulli noise with p=0.5)
applied after each max pooling step both during patch training and fine-tuning.

We report an experiment with BN and PatchTask18 initialization, but disabled DropOut
in both pretraining and fine-tuning, resulting in a performance drop from 70.48% to 63.98%
mAP. This is a significant drop, even below that of a randomly initialized network trained
with DropOut. While DropOut slows down the training progress (i.e., more epochs are
required to reach optimal validation score), it leads to much improved generalization of the
models. To answer the question which part of the pipeline benefits more from DropOut, we
disabled DropOut for a fine-tuning run starting from the ImageNet weights. This resulted in
a less pronounced performance drop from 73.60% to 72.12% mAP. We draw the conclusion
that the patch pretraining crucially depends on the regularization enforced by DropOut.

Effect of Jitter on PatchTask8. As mentioned before, the PatchTask8 allows to add more
jitter, leading to PatchTask8+margin. The idea is that more training examples might lead
to a better representation. We found that in fact it does improve the results from 71.14%
to 72.76% mAP (Tab. 2). However, this comes at the cost of a significantly longer training
time in the PatchTask (almost 200 epochs). In contrast, PatchTask18 reaches the same target
task performance with only half the training (95 epochs). As both tasks run equally fast, this
translates into a significant time difference.

Effect of Pretraining Duration. We observe that during patch training the weight variance
grows, an effect particularly pronounced in the first convolutional layers. One could interpret
this as an indication of highly specialized nodes, although such claims are hard to verify. In
the context of this work, we wonder whether there is an effect on fine-tuning. To investigate
this, we compare the performance of PatchTask18 initializations taken from epoch 95 (the
previously reported result) and from epoch 400. It turns out that the performance drops from
72.66% mAP (Tab. 2) to 70.29% mAP. Overall, it appears to hurt performance slightly if the
weight magnitudes increase.

Variation of Results due to Randomness. The experimental results presented in this paper
are not deterministic. Several aspects of the setup incorporate random effects: the stochastic
gradient descent used for optimization, random shuffling of the order of training examples,
random changes made to each example (jitter and DropOut), and initialization of weights
before the start of gradient descent. Obviously, these stochastic components lead to different
results in every run, even for identical hyper-parameters. This is a general issue in this area



10 P. SUDOWE, B. LEIBE: PATCHIT

Run 1 2 3 4 5 mean std dev
mAP 66.47% 66.27% 66.06% 68.04% 69.51% 67.27% 1.74%

Table 4: Repeat Experiments: We repeat the experiment multiple times and report the dis-
tribution of the results in order to assess the significance of the PatchTask improvement over
random initialization.

of research and not limited to the work presented in this paper. Naturally, it is interesting
to quantify the effect of this randomness on the results. In particular, it is important to rule
out that observations are not the result of a random outlier. The literature on applications of
ConvNets rarely discusses this aspect. Instead, it is common to report results of one experi-
ment. Ideally, one would repeat all experiments very often with identical hyper-parameters
and report the distribution of the results. Considering the time and resource cost for the
experiments, this is hard to accomplish.

In this context, one might pose the question how significant is the PatchTask improve-
ment over random initialization? To address this concern, Table 4 reports results of 5 iden-
tical runs of random initializations identical to the setup reported in our earlier experiments
(Table 2). This results in a mean over all identical runs of 67.27 and a standard deviation of
1.74. While one may object that a small sample size results in a noisy estimate, it is hardly
possible to increase the number of experiments by an order of magnitude.

If we compare this to the 72.66 mAP that we obtained with PatchTask18 initialization,
then it is unlikely that a random effect would boost the performance of our baseline to this
level. Strictly computationally, one could say that the PatchTask result is more than 3 stan-
dard deviations away from the mean. This leads us to the conclusion that indeed the Patch-
Task pretraining does yield an improvement over random initialization.

5 Conclusion

In this paper, we have proposed a novel patch task initialization for pretraining ConvNets.
We have shown that our PatchTask initialization is superior to standard random initialization,
while it comes at relatively minor cost. Compared to an initialization based on ImageNet,
our method greatly reduces the turnaround time in exploring network architecture changes,
facilitating further research. Our self-supervised method gets very close to the performance
level of ImageNet pretraining without using any external labels. We have verified through an
additional series of experiments that the results cannot be attributed to random variations. For
future work, we plan to use the PatchTask initialization to explore other architectures for fine-
grained recognition problems, such as pose estimation. Moreover, the PatchTask approach
could deliver a specialized representation for a verification stage in object detection.

Acknowledgments. This work was funded, in parts, by ERC Starting Grant project CV-
SUPER (ERC-2012-StG-307432).

References
[1] Steve Branson, Grant Van Horn, Serge Belongie, and Pietro Perona. Bird Species

Categorization Using Pose Normalized Deep Convolutional Nets. In BMVC, 2014.



P. SUDOWE, B. LEIBE: PATCHIT 11

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the Devil in the
Details: Delving Deep into Convolutional Nets. In BMVC, 2014.

[3] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised Visual Representa-
tion Learning by Context Prediction. In ICCV, 2015.

[4] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why Does Un-
supervised Pre-training Help Deep Learning? In AISTATS, 2010.

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In CVPR, 2014.

[6] G. Gkioxari, R. Girshick, and J. Malik. Actions and Attributes from Wholes and Parts.
In ICCV, 2015.

[7] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In AISTATS, 2010.

[8] David Hall and Pietro Perona. Fine-Grained Classification of Pedestrians in Video:
Benchmark and State of the Art. In CVPR, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet Classification. In ICCV,
2015.

[10] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv:1502.03167, 2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In NIPS, 2012.

[12] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level
Image Representations using Convolutional Neural Networks. In CVPR, 2014.

[13] Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised
Learning of Invariant Feature Hierarchies with Applications to Object Recognition. In
CVPR, 2007.

[14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
Features off-the-shelf: an Astounding Baseline for Recognition. In CVPR Workshop,
2014.

[15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv:1409.1556, 2015.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
In JMLR, 2014.

[17] Patrick Sudowe, Hannah Spitzer, and Bastian Leibe. Person Attribute Recognition
with a Jointly-trained Holistic CNN Model. In ICCV’15 ChaLearn Looking at People
Workshop, 2015.



12 P. SUDOWE, B. LEIBE: PATCHIT

[18] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and Composing Robust Features with Denoising Autoencoders. In ICML,
2008.

[19] Xialong Wang and Abhinav Gupta. Unsupervised Learning of Visual Representations
using Videos. In ICCV, 2015.

[20] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How Transferable are
Features in Deep Neural Networks. In NIPS, 2014.

[21] Ning Zhang, Manohar Paluri, Marc’Aurelio Ranzato, Trevor Darrell, and Lubomir
Bourdev. PANDA: Pose Aligned Networks for Deep Attribute Modeling. In CVPR,
2014.


