
CHANG, XIANG, HOSPEDALES: L1 GRAPH BASED SPARSE MODEL FOR LABEL DE-NOISING 1

L1 Graph Based Sparse Model for Label
De-noising

Xiaobin Chang
x.chang@qmul.ac.uk

Tao Xiang
t.xiang@qmul.ac.uk

Timothy M. Hospedales
t.hospedales@qmul.ac.uk

School of Electronic Engineering and
Computer Science
Queen Mary, University of London
London, E1 4NS
United Kingdom

Abstract

The abundant images and user-provided tags available on social media websites pro-
vide an intriguing opportunity to scale vision problems beyond the limits imposed by
manual dataset collection and annotation. However, exploiting user-tagged data in prac-
tice is challenging since it contains many noisy (incorrect and missing) labels. In this
work, we propose a novel robust graph-based approach for label de-noising. Specifi-
cally, the proposed model is built upon (i) label smoothing via a visual similarity graph
in a form of L1 graph regulariser, which is more robust against visual outliers than the
conventional L2 regulariser, and (ii) explicitly modelling the label noise pattern, which
helps to further improve de-noising performance. An efficient algorithm is formulated
to optimise the proposed model, which contains multiple robust L1 terms in its objective
function and is thus non-trivial to optimise. We demonstrate our model’s superior de-
noising performance across the spectrum of problems from multi-class with label noise
to real social media data with more complex multi-label structured label noise patterns.

1 Introduction
Constructing large manually annotated datasets [19] that conventionally required to scale
up visual recognition can be prohibitively expensive. Therefore, the idea of exploiting the
enormous amount of freely accessible visual data and associated tags on social media sites,
such as Flickr, has attracted increasing attention [5, 8]. Nevertheless, the user-provided tags
on social media sites can be extremely noisy, containing both incorrect and missing labels
as illustrated in Fig. 1(a). Directly learning from noisy labels brings negative impacts on
model performance [12]. Therefore, many studies focus on inferring more accurate and
complete labels from the noisy ones through label de-noising [6, 12, 21, 28] (also called tag
refinement [18, 37]) methods. Some of them consider either the incorrect labels [12, 22] or
missing labels [3, 6, 27, 35] only. In this works, both types of label noise are considered.

In order to rectify incorrect and missing labels, various cues can be exploited. Label
correlation is used to constrain predicted label sets with label co-occurence statistics [3,
29]. However, the required co-occurrence is typically estimated from noisy labels which
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limits its reliability. Visual appearance smoothness is another important cue for label de-
noising. One strategy to exploit this is training classifiers based on appearance [1, 22, 24],
but reliability is again limited as the classifier itself suffers from being trained with noisy
labels. As an alternative mechanism to exploit visual appearance, visual similarity graph
is widely used [6, 11, 27, 28, 29, 31]. It avoids incorporating noisy labels and directly
exploits the intuition that labels should vary smoothly with visual appearance. As a result,
visual similarity is more reliable than label correlation and visual appearance classifier cues
for label de-noising. In practice, it is usually implemented through an optimisation with a
Laplacian graph regularisation term [25, 36], to penalise label assignments that do not vary
smoothly on the visual similarity graph.

garden / flowers garden / flowers ocean / sunset / 
person / wedding

person / flowers / grass wedding wedding cat tiger
Visual Different, Label Similar Visual Similar, Label Different

(a) Noisy labels illustration (b) Visual outliers illustration
Figure 1: Illustrations of noisy labels (a) and visual outliers (b). Red indicates incorrect
labels, green missing labels and blue correct labels.

Two challenges are identified in this work in effectively exploiting the visual similarity
cue for label de-noising. The first challenge is the existence of visual outliers. As illustrated
in Fig. 1(b), even when two images look very different, they can share the same label; while
visually similar images can have different labels. The Laplacian graph regularisation term
conventionally used to model the visual similarity cue is sensitive to such outliers since it
is effectively an L2 norm penalty. This limits its label de-noising efficacy. Inspired by the
success of sparse learning for noisy problems in other vision tasks [33, 34], we propose
a novel L1 based visual similarity regulariser, which improves outlier robustness in visual
similarity modelling and thus enhances label de-noising performance.

A second key challenge is the existence of noise patterns in both incorrect and missing
labels. As shown in Fig. 1(a), in the NUS-WIDE dataset [7], flower images are consistently
mislabelled as ‘garden’, while users typically neglect to annotate ‘person’ in images with
people. In practice, such patterned label noise occurs simultaneously with random label noise
(e.g., the fourth image of Fig. 1(a)). However, few existing studies explicitly consider label
noise patterns. Among the few exceptions, [9, 30] require a set of noise free (or less noisy)
labels to estimate the noise pattern. However, this strong assumption undermines the initial
scalability motivation of learning from labels in the wild. To estimate noise patterns purely
with noisy labels, a further disambiguating cue is necessary. Visual appearance classifiers are
used in conjunction with solely noisy labels to estimate noise patterns in [4, 16]. However, as
mentioned earlier, this appearance cue is unreliable due to classifier training on noisy labels.
Therefore, we instead use the visual similarity cue to provide the required disambiguating
prior for noise pattern estimation. Specifically, we simultaneously model a novel L1 based
visual similarity graph (for visual outlier robustness), and learn a label noise pattern with a
L1 norm loss, which increases robustness to a variable numbers of noisy labels per image.

The main contributions of our proposed model, L1 Graph based Sparse model with ex-
plicit noise Pattern modelling (L1GSP), can be summarised as follows: (i) an L1 based visual
similarity graph regulariser is introduced to ensure labels vary smoothly with visual sim-
ilarity, while being robust to visual outliers; (ii) we explicitly learn a transition matrix to
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model the label noise pattern along with our robust graph regulariser (iii) the resulting ob-
jective function has two L1 norm terms for robustness to both visual outliers and multiple
label errors. Optimisation of such an objective is non-trivial, so an efficient algorithm is for-
mulated to solve it. Experimental analysis demonstrates our model’s superior performance
compared to the baseline methods at label de-noising, as well as the ultimate consequences
of de-noising in terms of improving a trained classifier’s performance on testing data.

2 Methodology
Our proposed L1 Graph based Sparse model with explicit noise Pattern modelling (L1GSP),
takes images and associated noisy labels for label de-noising. L1GSP consists of two key
components, the robust L1 visual similarity graph regulariser and the robust L1 label regu-
lariser with label noise pattern modelling, which are formulated in Sec. 2.1. The optimisation
algorithm to solve the double L1 objective is introduced in Sec. 2.2.
Notation We denote a set of N training samples X = (x1, ...,xN) and the associated noisy
labels Y = (y1, ...,yN)

T , where xi ∈ RD is a feature vector computed from the ith image and
yi ∈ {0,1}C. Thus there are C potential labels where Yi j = 1 indicates that instance xi has
label j ∈C. We also consider the multi-label setting, so more than one class can be assigned
to an instance and yi can be an all zero vector, meaning that xi has no label. Label de-noising
is to estimate the (unknown) set of cleaner labels Ŷ given noisy labels Y and visual data X .

2.1 Similarity Graph and Noise Pattern Model Formulation
Visual Similarity Graph A visual similarity graph is typically used to express the prior
belief that labels should vary smoothly with visual similarity. This is typically formalised
through the graph Laplacian matrix. Specifically, we use a Gaussian kernel to compute a
weight matrix W = {wi j}N×N from X , so that Wi j indicates the similarity between samples
xi and x j. The normalised Laplacian matrix L is given by L = I−D−

1
2 WD−

1
2 where I is a

N×N identity matrix and D is a diagonal matrix where Dii = ∑ j Wi j.
A simple de-noising strategy to exploit the Laplacian graph as a regulariser [36] is:

min
Ŷ

tr(Ŷ T LŶ )+ γ||Ŷ −Y ||2F , (1)

where tr(•) is the trace norm operator and γ controls the weights of the two terms. This
optimisation problem aims to find the cleaner labels Ŷ that are not only close to the observed
noisy labels Y (second term) but also constrained by the visual similarity graph (first term).
However, as explained earlier, the conventional Laplacian graph is not robust to visual out-
liers. This is because that despite its trace norm form in Eq. (1), it is derived from a L2 norm
term and thus sensitive to outlying training samples. Moreover, the label loss term ||Ŷ −Y ||2F
neither models label noise patterns nor is robust to noisy labels.
L1 Visual Similarity Graph To define a more robust visual similarity regulariser, we pro-
pose a novel L1 visual similarity graph regulariser. Since the Laplacian matrix L is symmet-
ric, it can be reformulated as the decomposition: L =V ΣV T = (Σ

1
2 V T )T Σ

1
2 V T = ST S, where

S = Σ
1
2 V T , Σ is a diagonal matrix, Σii is the eigenvalue of L and each column in V is the

eigenvector of L. This leads to a re-expression of the trace norm as:

tr(Ŷ T LŶ ) = tr(Ŷ T ST SŶ ) = ||SŶ ||2F (2)
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Our robust L1 visual similarity graph regulariser is defined by transforming the Frobenius
norm || • ||2F in Eq. (2) into || • ||1 (where ||K||1 = ∑i j |ki j|), thus leading to:

||SŶ ||2F ⇒ ||SŶ ||1 (3)
L1 Label Regulariser with Noise Pattern The robust L1 visual similarity graph regu-
larisation term improves robustness to visual outliers, but the conventional label loss term
(||Ŷ −Y ||2F ) can only deal with moderate random noise, and it is still vulnerable to strong
and patterned label noise. To address this, we first introduce a C×C transition matrix Q to
encode the label-noise pattern. Second, inspired by the success of L1 losses in strong noisy
data problems [26, 34], we introduce an L1 label regulariser leading to the loss ||Ŷ −Y Q||1.
Objective Function of L1GSP Computing Q is trivial if both ground-truth and noisy labels
are known. However, we aim to avoid this assumption, as it undermines the motivation for
learning with noisy labels. To this end, the proposed L1 visual similarity graph is used
to provide the required disambiguating prior for learning a noise pattern purely from the
noisy labels. Jointly estimating the cleaner labels Ŷ and the noise pattern Q leads to the
optimisation problem:

min
Ŷ ,Q
||SŶ ||1 + γ||Ŷ −Y Q||1 +

β
2
||Q||2F . (4)

where the two weighting factors γ and β control the relative strengths of the graph regu-
lariser, the label loss, and a regulariser on Q to prevent overfitting.

2.2 Optimisation
Our label de-noising framework L1GSP exploits both robust visual similarity regularisation
and robust label regulariser with noise pattern modelling. However, the optimisation of
Eq. (4) is non-trivial because the two L1 norm terms make it significantly harder [32] than
the more common case of a single L1 norm. An alternating optimisation procedure is first
formulated in order to simplify the joint optimisation of Ŷ and Q. Specifically, we optimise
Ŷ and Q iteratively by first breaking Eq. (4) into the following alternating objectives:

Ŷ ∗ = argmin
Ŷ
||SŶ ||1 + γ||Ŷ −Y Q∗||1, (5)

Q∗ = argmin
Q

γ||Ŷ ∗−Y Q||1 +
β
2
||Q||2F , (6)

where Q∗ is an identity matrix initially. We next explain how to solve each of these in turns.

Robust Graph Solution We first focus on solving Eq. (5), which contains the proposed L1
visual similarity graph, for cleaner labels Ŷ . Here Q∗ is a constant from initial condition or
the solution of Eq. (6) and Y is the given noisy labels, which is also a constant. Therefore, we
denote a new constant Z ≡ Y Q∗ in Eq. (5) for simplification. Inspired by [20], we introduce
an intermediate variable F ∈ RN×C, which leads to a new F-norm term,

min
Ŷ ,F

1
2
||Ŷ −F ||2F +λ ||SF ||1 + γ||Ŷ −Z||1 (7)

Eq. (7) can then be solved by alternating optimisation for F and Ŷ ,

F∗ = argmin
F

1
2
||F− Ŷ ∗||2F +λ ||SF ||1, (8)

Ŷ ∗ = argmin
Ŷ

1
2
||Ŷ −F∗||2F + γ||Ŷ −Z||1, (9)
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where Ŷ ∗ = Z initially. Each step in this alternating optimisation procedure is now sim-
pler since only one L1 norm term is present. In particular, the sub-problem Eq. (9) has
a closed-form solution [2]: Ŷ ∗ = so f t_thr(F∗,Z,γ), where so f t_thr(·, ·,γ) is a piecewise
soft-thresholding function. We define z = so f t_thr(x,y,γ) as:

z =
{

z1 = max(x− γ,y), f1 ≤ f2
z2 = max(0,min(x+ γ,y)), f1 > f2

,

where f1 = (z1− x)2 + 2γ|z1− y| and f2 = (z2− x)2 + 2γ|z2− y|. The sub-problem Eq. (8)
is not tractable when the data N is large since S is a N×N matrix. This can be addressed
by taking a small fraction m of the Laplacian graph L’s eigenvectors. In particular, we can
significantly reduce the dimension of F by decomposing it to F =VmA, where A = {ai j}m×C
collects the reconstruction coefficients and Vm ∈ RN×m contains the eigenvectors with the
smallest eigenvalues of L. Thus the sub-problem Eq. (8) becomes:

argmin
A

1
2
||VmA− Ŷ ∗||2F +λ ||SVmA||1

=argmin
A

C

∑
j=1

(
1
2
||VmA. j− Ŷ ∗. j||22 +λ

m

∑
i=1

Σ
1
2
ii |ai j|),

(10)

where Ŷ ∗. j and A. j denote the jth column of Ŷ ∗ and A, respectively. The orthogonality of V is
exploited here to simplify the term ||SVmA||1. The L1 optimisation problem in the final line
of Eq. (10) can be solved by existing solvers and we use L1General [23].
Transition Matrix Solution Next we solve Eq. (6) for estimating the transition matrix Q.
Note that Ŷ ∗ is the solution from Eq. (5) and thus a constant in Eq. (6). By introducing
an intermediate variable E = Ŷ ∗−Y Q in Eq. (6), we get the new objective: min

Q,E
γ||E||1 +

β
2 ||Q||2F + 1

2 ||E − Ŷ ∗ +Y Q||2F , which can in turn be solved by alternately optimising the
following two simple objectives,

E∗ = argmin
E

γ||E||1 +
1
2
||E− Ŷ ∗+Y Q∗||2F , (11)

Q∗ = argmin
Q

β
2
||Q||2F +

1
2
||E∗− Ŷ ∗+Y Q||2F . (12)

3 Experiments
We validate our proposed de-noising method on multi-class data with synthetic noise, where
the strengths and patterns of label noise can be experimentally controlled, as well as on two
multi-label datasets with user-provided tags reflecting real label noise distributions.

3.1 Datasets
Datasets We evaluate our model on MNIST [17], Pascal VOC 2007 [10] and NUS-WIDE
[7]. The MNIST dataset contains 60K training and 10K testing samples of 10 classes. We
use raw pixels as image features. Synthetic label noise is simulated by flipping specified
proportions of ground-truth labels. Flips are generated either (i) with uniform random label
noise so every wrong label is equiprobable, (ii) based on a synthetic pattern illustrated in
Fig. 3(a) (patterned label noise), or (iii) a hybrid of random and patterned label noise. In
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Pascal VOC 2007, we take the Flickr tags [14] associated with the original source Pascal
images as noisy labels. Preprocessing based on standard natural language processing proce-
dures is performed to keep only the noisy tags that are identical or synonyms of the 20 object
classes. This results in 1,521 training samples with noisy labels and 3,490 training samples
without any label – this reflects the fact that the user provided tags are extremely sparse. The
standard test set (4,952 images) is used for testing on the 20 classes. In NUS-WIDE, we
download the raw images still available on Flickr, filtering out the low quality (too small)
images. Following [13], we also discard images for which all labels are absent. This leaves
about 100,000 images, which we randomly partition into 60K for training and 40K testing on
the 81 ground-truth concepts. For both Pascal and NUS-WIDE, we extract 4096-dimension
CNN feature vectors with the pre-trained Caffe Reference network [15].

3.2 Settings
Parameter Settings The proposed model, L1GSP, has three free parameters: γ and β in
Eq. (4), and λ in Eq. (7). However, since for label de-noising the ground-truth labels are
unavailable, we cannot tune the model parameters by cross validation. In our experiments,
we fix the free parameters λ = 0.05 and β = 1.0 across different datasets, and set γ = 0.1, 0.1
and 0.001 for MNIST, NUS-WIDE and Pascal, respectively. γ for Pascal is smaller than the
others because a large proportion of its training labels are totally missing – smaller γ means
the de-noising relies less on the given noisy labels. The model’s sensitivity to the parameters
is discussed in Sec. 3.4.
Classifier Training Once the de-noising process produces cleaner labels Ŷ , we can use
them to train a classifier. However, the cleaner labels are not necessarily {0,1} vectors.
Therefore, in each de-noised sample, we take the τ classes with largest scores as 1s and the
others as 0s. For MNIST we use τ = 1 (single label). For multi-label Pascal and NUS-WIDE,
τ is set as 2,3 respectively based on the average number of labels per training image. For
MNIST, we train the LeNet [17] CNN on the de-noised labels. For NUS-WIDE we fine-tune
the Caffe Reference Net [15]. For the smaller Pascal07, we employ SVM instead of CNN.
Evaluation Metrics MNIST: we evaluate de-noising performance by the remaining train-
ing label error rate, and testing performance by accuracy. Pascal VOC 07: we use mean
Average Precision (mAP) metric to evaluate both de-noising and testing performance. NUS-
WIDE: we follow [18] in using the complementary metrics of per-class mAP(mAPc) and
per-image mAP (mAPi), for de-noising and testing.
Competitors Three label de-noising methods are used for comparison: L2 Visual similar-
ity Graph model (L2V G) follows the method in [36] as given in Eq. (1). L2 Visual similarity
Graph and Label similarity Graph model (L2V GLG) [27] combines the visual similarity cue
and label correlation cue into the following optimisation problem:

min
Ŷ

λX

2
tr(Ŷ T LXŶ )+

λC

2
tr(Ŷ LCŶ T )+ γ||Ŷ −Y ||2F , (13)

where both visual similarity LX and label correlation LC are exploited as graph regularisers.
Moreover, a Robust PCA (RPCA) based de-noising method [37] is also used for compari-
son. RPCA uses a L1 error term between cleaner and noisy labels (similar to our L1 label
regularisation term) and imposes a low-rank constraint on the de-noised labels together with
the conventional visual similarity (Laplacian) graph and label correlation graph. L2V GLG
and RPCA are only used for multi-label problems (NUS-WIDE and Pascal VOC 2007) since
they rely on label correlation.



CHANG, XIANG, HOSPEDALES: L1 GRAPH BASED SPARSE MODEL FOR LABEL DE-NOISING 7

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Noise Rates(%)

R
e

m
a

in
 N

o
is

e
 R

a
te

s(
%

)

Random Denoise

 

 
L

2
VG

L
1
GSP

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Noise Rates(%)

A
cc

u
ra

cy
(%

)

Random Test

 

 

GT

Noisy

L
2
VG

L
1
GSP

10 20 30 40 50
0

10

20

30

40

50

60

Noise Rates(%)

R
e

m
a

in
 N

o
is

e
 R

a
te

s(
%

)

Pattern Denoise

 

 
L

2
VG

L
1
GSP

10 20 30 40 50
30

40

50

60

70

80

90

100

Noise Rates(%)
A

cc
u

ra
cy

(%
)

Pattern Test

 

 

GT

Noisy

L
2
VG

L
1
GSP

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Noise Rates(%)

R
e

m
a

in
 N

o
is

e
 R

a
te

s(
%

)

Pattern & Random Denoise

 

 
L

2
VG

L
1
GSP

10 20 30 40 50 60 70
30

40

50

60

70

80

90

100

Noise Rates(%)

A
cc

u
ra

cy
(%

)

Pattern & Random Test

 

 

GT

Noisy

L
2
VG

L
1
GSP

Figure 2: De-noising (first row: remaining noise rate) and Testing (second row: accuracy)
performance on MNIST with varying label noise types and levels . Best viewed in color.

3.3 Results

MNIST The de-noising performance is shown in the first row of Fig. 2 for varying noise
strengths and types. Our proposed L1GSP (magenta) achieves consistently lower remaining
noise rates than L2V G at each noise level. The testing performance (Fig. 2, second row)
reveals that the relative performance above carries over to testing when a classifier is trained
on the de-noised labels. Directly learning from the noisy labels (black) results in poor perfor-
mance, and the two compared de-noising models push the results much closer to the upper
bound (green) of ground-truth labels with the proposed L1GSP clearly better. In MNIST,
the visual similarity is relatively reliable (less outliers) compared to Pascal and NUS-WIDE.
The explanation for the performance margin of L1GSP over L2VG thus primarily lies in the
L1 label regulariser with noise pattern modelling in our method. More illustrations on label
noise patterns and the learned transition matrices are in Sec. 3.4.

Pascal VOC 2007 This dataset is challenging for label de-noising due to the numerous
visual outliers compared to MNIST, and the extremely noisy and sparse labels. De-noising
results are summarised in Table 1. Our proposed model (L1GSP) outperforms all the baseline
methods (L2VG, L2VGLG and RPCA). This suggests that our proposed L1 visual similarity
regulariser is more robust to visual outliers than the L2 norm term used by the baselines.

The testing results when noisy/de-noised labels are used to train a classifier are also
given in Table 1. It is noteworthy that for testing, baseline models L2V G and L2V GLG give
even worse results than training directly on the noisy labels (NL). This is largely due to the
particularly poor performance on a few specific classes. In particular, the less robust L2
similarity graph term induces a strong imbalance in the estimated labels for certain classes.
For example, bottle and sofa are estimated as having 17 and 47 samples after de-noising,
compared to the true 248 and 295 samples. Meanwhile, dog and horse are over-estimated as
having 1408 and 2840 samples.

GT NL L2V G L2V GLG RPCA L1GSP
De-noising mAP - - 52.21 55.01 56.39 60.09

Testing mAP 71.98 42.34 40.33 41.10 53.54 58.66
Table 1: Pascal VOC 2007 de-noising performance and testing performance (mAP, %). GT
for Ground-truth; NL for Noisy Labels.
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NUS-WIDE The de-noising and testing results are shown in Table 2. The proposed L1GSP
achieves significantly better results on both de-noising and testing than the baselines L2V G
and L2V GLG. RPCA achieves similar mAPi performance to our model but significantly
lower in mAP metric. It suggests that RPCA’s de-noising performance on NUS-WIDE is
imbalanced among classes and some classes are sacrificed to boost the others. On the mAPi
testing metric, the L2V G and L2V GLG baseline methods make little improvement (less than
2%) on the Noisy Label lower bound, but our proposed L1GSP improves the baseline by a
good margin of about 10%. However, on the mAP metric, the improvements made by all
de-noising methods are not very significant. This is because NUS-WIDE is a very imbal-
anced dataset. Some classes (e.g. map, earthquake) have very few (only dozens of) samples.
Learning from such extremely rare classes is particularly hard, but these rare classes are
penalised equally under the mAP metric and limit the average performance.

De-noising Testing
mAPc mAPi mAPc mAPi

GT - - 47.76 74.31
NL - - 30.07 47.88

L2V G 52.39 57.45 33.81 48.52
L2V GLG 53.02 59.68 34.69 49.45

RPCA 48.89 64.10 31.20 54.21
L1GSP 58.46 66.98 35.70 57.84

Table 2: De-noising (left) and testing (right) performance (mAP, %) on NUS-WIDE. GT for
Ground-truth; NL for Noisy Labels.

3.4 Further Analysis
Label Noise Patterns In our model the label noise pattern is represented by the transition
matrix Q and iteratively learned along with cleaner labels Ŷ without relying on ground-
truth labels. The intrinsic noise patterns and the learned transition matrices are illustrated in
Fig. 3. Fig. 3(a) shows the noise pattern used to synthesise patterned label noise in MNIST,
e.g. a fixed portion of labels ‘8’ are consistently flipped to label ‘6’ as the patterned incorrect
labels. The learned transition matrix Q (condition: 64% of hybrid label noise including 32%
randomly incorrect and 32% with the given noise pattern) is shown in Fig. 3(b). Here we can
see that the learned matrix includes: (i) a bright diagonal representing unchanged labels, (ii)
a bright pattern of off diagonal elements matching the true label noise pattern in Fig. 3(a),
and (iii) some weak background elements corresponding to random label noise. The true and
learned transition matrix Q for NUS-WIDE are shown in Fig. 3(c) and Fig. 3(d), respectively.
The true transition matrix Q is computed by min

Q
||Ȳ −Y Q||2F + ||Q||2F using ground-truth

labels Ȳ . We see that our model estimates a very similar Q despite not having access to the
ground-truth labels.
Contributions of Model Components The proposed L1GSP has two L1 regularisation
terms: visual outlier robust L1 similarity graph and L1 label regulariser with label noise
pattern modelling. In order to evaluate the contributions of these components for de-noising,
we compare the proposed model (L1GSP) with the following variants:
L1GS: Incorporate robust L1 visual similarity term and robust L1 label loss, but no noise
pattern modelling: min

Ŷ
||SŶ ||1 + γ||Ŷ −Y ||1;

L1VGL2L: L1 Visual similarity Graph with L2 Label regulariser: min
Ŷ
||SŶ ||1 + γ||Ŷ −Y ||2F ;



CHANG, XIANG, HOSPEDALES: L1 GRAPH BASED SPARSE MODEL FOR LABEL DE-NOISING 9

(a) (b) (d)(c)

Figure 3: Ground-truth label noise pattern and learned transition matrices. (a) Ground-truth
noise pattern used for noise synthesis in MNIST; (b) Transition matrix Q learned from 64%
hybrid label noise by our model; (c) NUS-WIDE ground-truth transition matrix; (d) Learned
NUS-WIDE transition matrix Q by our model.

L2VGL1L: L2 Visual similarity Graph with L1 Label regulariser: min
Ŷ
||SŶ ||2F + γ||Ŷ −Y ||1;

L2VG: L2 Visual similarity Graph with L2 Label regulariser as in Eq. (1).

We use Pascal VOC 2007 to compare these variants, with results summarised in Table 3.
Conclusions can be drawn as follows: (i) Having the L1 norm for visual similarity graph
makes the biggest contribution (the performance margin between L1V GL2L and L2V G is
4.21%) to model performance. This is because visual similarity is an important but noisy
cue for label de-noising and the proposed L1 visual similarity graph regularisation term is
more robust to the negative impacts of visual outliers than the L2/Frobenius norm term; (ii)
Comparing L1GSP with L1GS, we find that explicitly modelling the noise pattern helps to
further boost the de-noising performance by 2.59%; (iii) L1 label loss also contributes to the
performance boosts because of its robustness to label noise; (iv) Our proposed L1GSP model
combines the two L1 regularisation terms with explicit label noise pattern modelling. As a
result, it achieves the best performance among the variants.

L2V G L2V GL1L L1V GL2L L1GS L1GSP
mAP 52.21 53.69 56.42 57.50 60.09

Table 3: Component contributions evaluated on Pascal VOC 2007 (mAP, %).

Qualitative Results Qualitative results of label de-noising are shown in Fig. 4(a). The first
example shows that incorrect labels can be eliminated from the top ranking predictions of our
de-noising model. The patterned incorrect label ‘garden’ does not appear in our de-noised
labels and more relevant ones, such as ‘sky’ and ‘clouds’, show up instead. The effectiveness
of the proposed model to recover missing labels is illustrated in the second image of Fig. 4(a),
where the missing labels ‘elk’ and ‘animal’ appear in the top ranks of the de-noised labels.
The last image of Fig. 4(a) shows a failure case using our model, which is mainly due to
the unconventional appearance of toys. The predicted label ‘food’ may corresponds to the
toy ice creams in the image, while labels ‘flowers’ and ‘rainbow’ are given may due to the
colourful image content.
Parameter Robustness We found that our model is insensitive to λ and β and thus fix
them as λ = 0.05 and β = 1.0 across the three different datasets we used. The sensitivity of
our model’s de-noising performance with respect to γ is illustrated in Fig. 4(b). The results
suggest that the impacts of different γs are small.
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Noisy Label:
animal / elk / grass

De-noised Label:
animal / grass / elk

Noisy Label:
garden / sky / clouds / flowers

De-noised Label:
sky / clouds / flowers

Noisy Label:
rainbow / toy

De-noised Label:
flowers / food / rainbow

(a) Qualitative Results (b) Parameter Robustness
Figure 4: (a) Illustrations of label de-noising results on NUS-WIDE dataset (top 3 scoring of
the de-noised labels by our model are shown). Red indicates the incorrect labels, green for
missing labels and blue for correct labels. Failure case in red dashed line; (b) Illustration of
the effect of γ on our L1GSP de-noising model with NUS-WIDE dataset.

4 Conclusion
We have provided a step towards the sought-after capability of learning from noisy labels
in social media data by introducing a novel robust label de-noising model and formulating
an efficient algorithm to solve it. The proposed model is based on a visual-outlier robust L1
visual similarity graph regularisation term, and estimating the label noise pattern along with
the visual similarity constraint to further improve label de-noising performance. In future
work, we aim to integrate appearance modelling and feature representation learning into our
de-noising model.
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