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Abstract

This paper proposes a novel deep learning framework for multi-label image classi-
fication, namely regional gating neural networks (RGNN). The motivation is two folds.
First, global image features (including CNN based features) ignore the underlying con-
text information among different objects in an image. Consequently, people attempt to
use information from objectness regions. However, current objectness region proposal
algorithms usually produce several thousand region candidates, including many classifi-
cation irrelevant or even noisy regions. This leads to the second problem: how to select
useful contextual regions for image classification. RGNN is an end-to-end deep learn-
ing framework that can automatically select contextual region features with specially
designed gate units, which are then fused for classification. Because the gate units and
the classifier are integrated in the same deep neural network pipeline, we can learn pa-
rameters of the network simultaneously. We evaluate the proposed method on PASCAL
VOC 2007/2012 and MS-COCO benchmarks, and results show that RGNN is superior
to existing state-of-the-art methods.

1 Introduction

Image classification is a fast moving research area. Conventionally, handcrafted features like
SIFT and traditional classifiers like SVM are utilized to classify the images. Recently, break-
through has been achieved by deep convolutional neural networks (CNNs), which remark-
ably outperform traditional methods on several well-known image classification benchmarks
like PASCAL VOC and ILSVRC [3, 13, 20].
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The early deep learning based methods usually take size-normalized full images as in-
puts and feed them into a CNN network for classification. Since image classes are strongly
related to the containing objects, the main limitation behind this framework is caused by
its ignorance to the underlying context information among the objects in the images. This
will easily cause the well-known semantic gap issue [22]. Another side effect is that size-
normalization will change the aspect ratios of the input images, yielding various internal
object distortions and thus harming the classification accuracy.

Region feature based methods have been proved to be helpful earlier than the prosperity
of deep learning models [4, 9]. Recently, lots of proposed region proposal algorithms pro-
vide handy and economic solutions to produce comparatively high quality objectness region
boxes on the input images [11]. Some existing works further suggest that coupling CNN
with semantic region proposals can largely boost the image classification performance [24].
However, when applying region proposals directly to classification task, people observed that
lots of irrelevant or even noisy (non-object) regions would definitely deteriorate the classi-
fication accuracy. Although some heuristic region selection/filtering procedures have been
designed to handle this issue [15, 24, 25], they are far from optimal due to the lack of explicit
objective function consistent to the classification task to guide contextual region selection.

In this paper, we propose a novel end-to-end deep learning framework named as regional
gating neural networks (RGNN) to address the above limitations. RGNN takes raw images
and a set of region proposals as inputs, and imposes gate units on regional deep representa-
tion to perform contextual region selection. Selected regional features are then fused for the
final classification purpose. The gate units and classifier are integrated in one deep neural
network, so all the parameters can be learnt together. Figure 1 illustrates the architecture
of the proposed RGNN. To the best of our knowledge, we are the first to impose gate unit
on CNN framework for contextual region selection and multi-label image classification with
multi-task optimizations in an end-to-end manner. The major contributions of this paper are
as follows

1. We propose RGNN, an end-to-end deep learning framework for multi-label image
classification. RGNN can simultaneously select contextual regions with designed gate
units, and perform classification over contextual image representations.

2. We study two different gate units: (1) region-level gate controls the pass/suppress for
each region; (2) feature-level gate controls the pass/suppress for each feature dimen-
sion in every regions. One may choose either type of gate according to the practical
needs.

3. We achieve state-of-the-art performances on PASCAL VOC 2007/2012 and MS-COCO
multi-label classification benchmarks, solely based on the proposed method without
multi-model fusion.

The rest of this paper is organized as follows. Section 2 briefly reviews the related works
and Section 3 elaborates the proposed RGNN. In Section 4, we conduct experiments to
evaluate the proposed method, and conclusions are drawn in Section 5.

2 Related Works
Recently, there are many research efforts on combining advanced CNN models with se-
mantic regions since image classes are strongly correlated to the objectness regions within
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Figure 1: Architecture of RGNN. Layers such as pooling, ReLU and soft-max are omitted
in the illustration for clarity. Example region proposals are depicted on the input image.

the image. Some early attempts like [8] make orderless pooling over all extracted CNN
region features sampled at differently scaled sliding windows. For high quality candidate
regions, many object proposals methods were proposed in the past few years, such as se-
lective search [23], EdgeBox [28], BING [2], and so on. Based on these region proposals,
Girshick et al. [6] invented RCNN to successfully combine CNN with local region informa-
tion for object detection purpose, followed by the improved Fast RCNN [5] highlighting on
improved efficiency in region features extraction. It is worth noting that Ren et al. [19] has
also invented the Faster RCNN method for object detection, in which region bounding boxes
are discovered by embedded region proposal networks rather than separated region proposal
methods. We emphasize that different from [19], this work focuses mainly on the generic
problem of optimal selecting contextual information given any kind of available image re-
gions for multi-label classification purpose, regardless how these regions are generated.

When utilizing region proposals for the image classification purpose, region selection/
filtering is generally required [15, 16, 25]. This is because current region proposal algo-
rithms usually produce a large portion of redundant or even noisy regions in order to achieve
high objectness recalls. For instance, Wei et al. [24] proposed a CNN based method called
Hypotheses-CNN-Pooling (HCP) which (1) removes some regions according to their sizes,
aspect-ratios and confidence scores; (2) clusters regions into groups and keeps only one rep-
resentative region in each group. Note that all of Luo et al. [15], Mettes et al. [16] and Wu
et al. [25] made heuristic contextual region selection by using separate classifiers. The major
limitations of these methods are due to the handcrafted rules or heuristic assumptions, which
usually yield non-optimal solutions, especially for those with multi-stage training procedure.
Compared to these existing methods, in this work we try to realize automatical region selec-
tion built in deep classification architectures and employ a special multi-task optimization
scheme to help better network training.

Meanwhile, researchers already found that gate structures in LSTM [10] could be used
to discover visual attentions and value instance/feature importance in some audio and visual
tasks [18, 26]. Our designed gate units in RGNN framework are inspired by these works.
However, we attempt to embed them seamlessly in the image classification framework to
tackle the orderless and various numbered regions selection problem.
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3 Our Approach
We propose RGNN to classify multi-label images, which realizes automatic contextual re-
gion feature selection with integrated gate units in an end-to-end learning framework. Fig-
ure 1 illustrates the RGNN architecture. The feed-forward path of RGNN consists of 5 steps:

1. Region boxes. For each image, object proposal method is applied to produce multiple
candidate regions. We adopt EdgeBox for region proposal generation.

2. Shared CNN networks. Input images with proposal bounding boxes pass through a
series of shared convolution/pooling layers. ROI pooling is then applied to every pro-
jected regions to obtain fixed size feature maps. FC layers are connected after ROI
pooling layer to produce regional representation as vectors.

3. Gate Units. Gate units are imposed on each regional representation to control whether
to be turned on/off so as to select useful contextual region features. In specific, two
kinds of gates are described in Section 3.1, namely region-level gate and feature-level
gate.

4. Fused contextual representation. Regional representation will be fused together to
produce the contextual feature representation with a multi-scale cross region pooling
layer. See more details in Section 3.2.

5. Multi-label classification. Fused contextual representation are fed into FC layers to
predict image labels. The whole network is optimized with multi-label loss. When
object level bounding box annotations are available, we further introduce a localization
loss to optimize network by multi-task learning. See more details in Section 3.3.

3.1 Gate Units
Gate units are deployed to select contextual region features. The idea is inspired by the
mechanism of gate unit in LSTM [10], which is used to learn to remember or forget the
history information from long sequence of input data. Different from LSTM, our gate units
do not depend on data at different time steps, but are elaborately designed to “remember” or
“forget” features across different image regions.

Given an input image I, assume the region proposal algorithm extracts T regions denoted
asR= {R1, . . . ,RT}. The value of T may vary for different images. We formulate gate unit
to produce fused contextual image representation z as

z = f (x̂1, . . . , x̂T ), x̂i = g(xi,ui) (1)

where xi is the original region features, which are transformed to x̂i by the gating function
g(·) dependent on extra region information ui. And f (·) is the fusion function that com-
bines multiple gated features into a contextual representation z. In this paper, we design two
kinds of gate structures named as region-level gate (Figure 2(a)) and feature-level gate (Fig-
ure 2(b)) respectively. They explore different contextual information among regions. People
may choose either type of gate according to their practical needs.

Region-level gate controls the pass/suppress of each region features as a whole by their
contribution to the classification. In other word, feature values within one region will be
endowed with the same weight of importance. Figure 2(a) illustrates the architecture of
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Figure 2: Illustration of (a) region-level gate unit and (b) feature-level gate unit.

region-level gate. In this figure, xi denotes features from shared CNN networks for the i-th
region of input image. In practice, it could be output from certain layer of the pre-trained
CNN model. And ui is an utility input used to control how important xi is. It could be any
data in the data-flow to generate xi. For instance, we find in our experiment that it works best
if we respectively take the outputs of the 7-th and the softmaxed 8-th FC layers as ui and xi
based on VGG networks structure [21]. The vector ui is mapped to a probabilistic value ai
with feature space transformation Tr :R|U | 7→ R followed by a sigmoid function. Formally,
the region-level gate operation is defined as

vi = Tr(ui), ai = σ(vi), x̂i = aixi (2)

where x̂i is the feature values after gating operation. The mapping function Tr is realized by
the fully connected layer. The sigmoid function yields a soft gate. As a result, contextual
regions will be assigned with high gate values (close to 1) and keep their impacts for final
classification, while irrelevant/noise regions will be suppressed. As gate units are integrated
with deep neural networks, the parameters could be trained with the back-propagation (BP)
algorithm. Gradients of the region-level gate are calculated by

∂xi = ai∂ x̂i, ∂ai = 1T ∂ x̂i, ∂vi = vi(1− vi)∂ai, ∂ui = T ′r (ui)∂vi (3)

Feature-level gate controls the fine-grained pass/suppress for each feature dimension
across different regions by their contribution to the classification. Figure 2(b) illustrates the
structure of feature-level gate. In specific, the feature scaling is performed element-wise,
instead of region-level. Considering that the dimensions of feature vector xi and the gate
control input ui might not be the same, we first use a transformation function Tf : R|U | 7→
R|X | to map ui to a new representation vi with the same dimension of xi. Then the sigmoid
function is applied to further convert them into probabilistic values ai ranging from 0 to 1.
Formally, the feature-level gate operation is defined as

vi = Tf (ui), ai = σ(vi), x̂i = ai�xi (4)

where�means element-wise multiplication. Gradients of this kind of gate are calculated by

∂xi = ai�∂ x̂i, ∂ai = x�∂ x̂i, ∂vi = vi� (1−vi)�∂ai, ∂ui = T ′f (ui)∂vi (5)

3.2 Fused Contextual Representation
After gate units, regional representations are aggregated to a unified image representation.
Since the gate units already pick out contextual regions or features, here we apply order-
less max-pooling to gated outputs, which simply calculates element-wise maximum values
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across different regional features. To enhance the performance, we also introduce the multi-
scale cross regions pooling scheme to group region features by their belonging region sizes.
We divide regions into 5 scales according to the ratio of their sizes proportional to the size of
the whole image, which are (0,1/32], (1/32, 1/16], (1/16, 1/8], (1/8, 1/4], (1/4, 1]. Then we
perform cross-region max-pooling on gated region outputs separately at each scales. Finally,
we concatenate features from each scale together to obtain a unified contextual representa-
tion. Thus, suppose xi,k is the k-th feature in the i-th region, the fused feature at dimension k
of scale s is calculated as zs,k = max{xi,k | Ri ∈Rs}, whereRs means the s-th region group.
Note that this pooling scheme has the advantage to be seamlessly embedded into the whole
classification network structure due to its simplicity, which is meanwhile proved to be very
effective in our experiments.

3.3 RGNN Learning for Multi-label Classification
We feed aggregated contextual features to FC layers for classification purpose. Both gate
units and classification FC layers are integrated into one deep neural network, so that we can
learn the optimal parameters in an end-to-end manner. Specifically, the error propagation for
contextual feature is assigned by ∂xi,k = ∂ zs,k if i = argmax j x j,k for all R j ∈ Rs. In other
word, ∂xi,k = ∂ zs,k if xi,k is the winner of maximum operation at k-th dimension across the
s-th region group. Otherwise, ∂xi,k is set to 0.

We train the neural network using multi-label loss, with the last soft-max layer generating
the estimated probabilities on target classes. In more details, cross entropy loss are calculated
based on the differences between predicted values and ground truths, and the errors are back-
propagated with mini-batch SGD method. Denote y as image label in the form of indicator
vector of length C, where C is total number of classes. Here y j = 1 if class j assigned to the
image, otherwise y j = 0. To deal with imbalanced datasets which are very popular in real
world, we define a balanced loss function as follows

Lcls =
1
N ∑N

i=1{
1

|yi = 1|∑
C
j=1 yi j log ŷi j +

1
|yi = 0|∑

C
j=1 (1− yi j) log(1− ŷi j)} (6)

where N is the mini-batch size and ŷi j is the probabilistic output of RGNN. |yi = 1| and
|yi = 0| count the number of ones and zeros in yi respectively.

It is not necessary to train the RGNN network from scratch. For some tasks with rel-
atively small datasets, we can start the network with the CNN models pre-trained on Ima-
geNet. We can initialize the parameters for convolution layers and FC layers before cross-
region pooling from the pre-trained CNN model, and other layer parameters with Xavier
initialization [7], and then fine-tune the network on given training set.

When the object-level bounding-box annotations are available, we can introduce an ad-
ditional task with localization loss. Our goal for localization in this paper is to pick out best
object regions from region proposal candidates, rather than accurate bounding box regression
as in [6]. We define the object localization loss as

Lloc =
1
N ∑N

i=1 ∑Ti
j=1

1
Ti
‖ri j−gi j‖2 (7)

where N is the mini-batch size and Ti is the number of regions in the i-th image. Here gi j
is the gate values on the j-th region and ri j is the assumed ground truth importance of the
corresponding region. The value of ri j is given by the maximum IoU overlap ratio between
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region Ri j and any ground truth regions Gi = {Gik | k = 1, . . . ,K} in the image with a specified
threshold θ . Mathematically,

ri j =

{
1, if max{IoU(Ri j,Gik)|Gik ∈ Gi}> θ
0, otherwise

(8)

We simply set θ to 0.5 in our experiments. Note that ri j and gi j are vectors for feature-level
gates, while they are scalars for region-level gates.

The two losses Lcls and Lloc are combined to a multi-task loss to train the network jointly
for multi-label image classification and object localization:

L(x) = Lcls(x)+λLloc(x) (9)

where λ is a hyper parameter controlling the weight of the combined localization losses.

4 Experiments

4.1 Datasets and Experimental Settings
We first evaluate the proposed method on the widely used PASCAL VOC 2007 and 2012
benchmarks for multi-label image classification. Both benchmarks contain images from 20
categories including animals, handmade objects and natural objects at wild locations and
scales. In VOC 2007/2012 there are 5011/11540 images in trainval (short for training +
validation) set and 4952/10991 images in test set. All images in the datasets are annotated
with multiple class labels and object-level bounding boxes.

Then we make evaluation on the large-scale MS-COCO benchmark [14] in Section 4.5
to further verify the generalization capability of the proposed RGNN. MS-COCO dataset has
a higher positive label density on a much larger label set of 80 common objects. It contains
82,783 images in the training set and 40,504 images in the validation set.

4.2 Implementation Details
The first few layers of RGNN were inherited from VGG-16 network pre-trained on Ima-
geNet. We replaced the last max pooling layer in VGG-16 with the ROI pooling layer as
introduced in [5], which projected differently sized ROI feature maps into fixed size ones.
Then the fixed size feature maps were further connected to some FC layers. We adopted out-
put of FC7 as gate input data for both region-level gate and feature-level gate, and imposed
gate units to control the semantic outputs of FC8 after softmax transform. Both gate units
consisted of one FC layer to map gate inputs to gate control values. Gated regional features
were pooled into five scales as described in Section 3.2. In the end, two FC layers were
applied to the fused contextual representation to produce classification results. Weights of
all these new layers (gate units and classification FC layers) were initialized with the Xavier
method [7].

We adopted a 4-step parameter-tuning scheme to help the network get properly trained.
First, we fine-tuned VGG-16 network with size normalized input (without regions and ROI
pooling) on 20-category VOC data using multi-label loss. This would give reasonable pa-
rameters initialization for RGNN. Second, we took free-sized images with regions as input
and fine-tuned RGNN with ROI pooling, but with all gates turned on. Third, we trained the
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Model Settings mAP (%)
(1) VGG without fine-tune 89.3
(2) VGG + fine-tune 90.1
(3) Single-scale Regional VGG 89.9
(4) Multi-scale Regional VGG 90.8
(5) RGNN-RL + multi-label loss 92.9
(6) RGNN-RL + multi-task loss 93.7
(7) RGNN-FL + multi-label loss 93.1
(8) RGNN-FL + multi-task loss 93.7
Table 1: Ablation studies on VOC 2007.

Method Property
PRE-1000C [17] AlexNet + sliding windows.
CNN S TUNE [1] Fine-tuned global CNN-S.
VGG-16+19 [21] Fusion VGG16 + VGG19.
FV+LV-20-VD [27] Fisher vector of regional CNN.
FV+LV-Fusion [27] Fusion with VGG results.
DA-Fusion [15] Fusion of deep attributes.
HCP-VGG [24] HCP with VGG16.
HCP++ [24] HCP-VGG + subcat. model.
SPD [16] GoogleNet + part based fusion.

Table 2: List of compared methods.

network only with localization loss, which ensured a good initialization of gate units for next
step. Forth, we fine-tuned the network with the proposed multi-task loss. In this step, we
slowly decreased hyper parameter λ in Eq (9) from 1 to 0, allowing more freedom for the
multi-label loss to select classification related contextual regions with reliable gate parame-
ters. We fine-tuned the network for 10 epochs in the first 3 steps, and 20 epochs in the last
step. Adam solver was used with the base learning rate set to 10E-4.

The system was implemented based on the Caffe framework [12], and trained on NVIDIA
TitanX GPU. During testing, RGNN runs about 430ms on GPU for each input image, includ-
ing region proposal generating time with EdgeBox (∼200ms per image).

4.3 Ablation Studies

We explicitly investigate the contribution of different settings of the proposed methods in this
subsection. First, we explore the proper network structure settings, especially on which layer
is used for contextual feature pooling. On VOC 2007 test set, the mAP scores by contextual
pooling over FC6/FC7/FC8/softmax-layer are 89.5/90.8/92.9/93.7 with region-level gates,
and 89.0/92.3/92.9/93.7 with feature-level gates. This indicates that contextual pooling over
deep softmax layer gives better results, which is consistent with the observations in [15].

Second, we gradually change the VGG-16 baseline structure towards RGNN structure,
as listed in Table 1, and compare the performances of trained models in each step. More
specific, Item-1 is the baseline VGG model without fine-tuning, but the result is obtained by
evaluation on multiple image crops as in [21]. Item-2 is the VGG model globally fine-tuned
on VOC 2007 training set. Item-3 is the VGG model with ROI pooling and single-scale cross
region pooling, but with all gates tuned on. Item-4 is the VGG model with ROI pooling
and multi-scale orderless cross region pooling, also with all gates tuned on. Item-5 is the
proposed RGNN model with region-level gates, but fine-tuned only with multi-label loss.
Item-6 is the RGNN model with region-level gates fine-tuned with the proposed multi-task
loss. Items-7/8 are the feature-level gates counterparts of Item-5/6. It is obvious that RGNN
achieves significant improvement over those models without gate units, and multi-task loss
further improves the results in both cases. Comparing Item-3 and 4, it also shows that multi-
scale contextual pooling used in our settings performs better than that of single-scale case.

Third, we visualize the outputs of region-level gates. Here we sort the gate values of all
regions for the given image, and mark the top and bottom scored regions in Figure 3(a) and
3(b). We also build a heat-map of gate values on the whole image, as shown in Figure 3(c). It
is obvious that the top regions (including person, horse, wheels, etc.) are more semantically
meaningful and could be viewed as contextual regions, while bottom regions are trivial noisy
regions. This study verifies the effectiveness of gate units for contextual region selection.
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(a) (b) (c)

Figure 3: Illustration of (a) top-5 selected regions in red boxes; (b) bottom-5 discarded regions in
green boxes; and (c) heat-map of region-level gate values mapped to the image.

4.4 Comparison with State of the Arts on VOC 2007 and 2012 Datasets

Here we compare the proposed RGNN method to most recent state-of-the-art methods on
PASCAL VOC 2007 and 2012. We strictly follow the evaluation protocol by VOC and
report performances by average precisions (AP). The results on VOC 2012 were obtained
from online evaluation server. The compared methods and their property descriptions are
listed in Table 2. All the compared methods utilize extra data during training or pre-training,
such as ImageNet dataset and MS-COCO dataset. Except the first two methods and SPD
on the table, all the others were based on the same deep VGG-16 model pre-trained on
ImageNet. We elaborately add gate units based on VGG-16 in our RGNN experiments for
fair comparisons. Note that VGG-16+19, FV+LV-Fusion, DA-Fusion and HCP++ are based
on multiple models fusion from different cues, while our method is based on single model.

Table 3 and 4 respectively display the detailed per-category performances on VOC 2007
and 2012. It is obvious that RGNN with either region/feature-level gate achieves top results
on both benchmarks. In specific, both RGNN-RL/FL achieve the best mAP of 93.7% on
VOC 2007, while RGNN-RL achieves the best mAP of 93.4% on VOC 2012.

It’s worth noting that RGNNs outperform the state-of-the-art single-model method HCP-
VGG with a big margin of 2∼3% on mean-AP scores for both benchmarks. Remember
that HCP-VGG also takes object region features into consideration. However, the region
selection in HCP-VGG is based on heuristic rules. Compared to HCP-VGG, our RGNN
takes advantages of automatically learnt gate units embedded in deep CNN classification
networks to select important contextual regions. From the ablation study results reported in
Table 1, we can see that all the introduced strategies like multi-scale cross regions pooling,
gate units and multi-task learning contribute to the performance boost against HCP-VGG,
while the proposed gate units bring the most significant performance gain.

It is shown in Table 4 that even compared to HCP++ (a multiple models fusion version
of HCP) on VOC 2012, our proposed RGNNs are still slightly better in performance at a
much faster processing speed compared to that of [24] (10s/image with VGG-16 on GPU).
All these results demonstrate the effectiveness of RGNN for simultaneous contextual region
feature selection and multi-label image classification.

4.5 Experiments on Large-Scale MS-COCO Dataset

In this part, we further evaluate RGNN on the much larger MS-COCO dataset [14] to exam-
ine its generalization capability. The only change to the RGNN structure compared to the
settings in Section 4.4 was the expanded output layer dimension to 80 in order to agree with
the new category size. As there are very few multi-label classification results yet reported on
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mAP
PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

CNN S TUNE 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4
VGG-16+19 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7

FV+LV-20-VD 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6
FV+LV-Fusion 92.8 96.9 97.1 95.8 74.3 94.2 96.7 97.7 76.7 90.5 88.0 96.9 97.7 95.9 98.6 78.5 93.6 82.4 98.4 90.4 92.0

DA-Fusion 99.4 97.5 96.8 96.6 81.3 92.9 96.8 97.1 75.6 93.7 84.5 95.8 96.8 96.0 98.6 81.9 97.7 80.2 99.0 91.5 92.5
HCP-VGG 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

SPD 98.7 97.0 97.9 94.8 78.3 91.4 96.4 97.3 75.0 85.0 82.4 95.4 96.1 94.7 98.5 75.9 90.9 82.1 97.3 89.7 90.7
RGNN-RL 99.3 97.0 97.5 98.1 80.6 95.5 97.2 98.0 82.1 96.5 86.3 97.5 97.9 95.6 98.8 84.0 97.2 82.7 99.1 93.3 93.7
RGNN-FL 99.5 97.1 97.5 97.9 80.4 95.7 97.2 98.1 82.2 96.8 86.0 97.7 97.9 95.6 98.8 83.8 97.2 83.0 99.1 93.2 93.7

Table 3: Classification results (AP in %) comparison with state of the arts on VOC 2007.

mAP
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

CNN S TUNE 96.8 82.5 91.5 88.1 62.1 88.3 81.9 94.8 70.3 80.2 76.2 92.9 90.3 89.3 95.2 57.4 83.6 66.4 93.5 81.9 83.2
VGG-16+19 99.1 89.1 96.0 94.1 74.1 92.2 85.3 97.9 79.9 92.0 83.7 97.5 96.5 94.7 97.1 63.7 93.6 75.2 97.4 87.8 89.3

FV+LV-20-VD 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97.0 88.2 89.4
FV+LV-Fusion 98.9 93.1 96.0 94.1 76.4 93.5 90.8 97.9 80.2 92.1 82.4 97.2 96.8 95.7 98.1 73.9 93.6 76.8 97.5 89.0 90.7

DA-Fusion 99.2 93.7 96.0 95.2 81.7 94.3 91.6 98.1 81.9 91.7 83.5 96.3 95.6 96.0 98.2 77.8 93.6 74.7 97.6 91.9 91.4
HCP-VGG 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5

HCP++ 99.8 94.8 97.7 95.4 81.3 96.0 94.5 98.9 88.5 94.1 86.0 98.1 98.3 97.3 97.3 76.1 93.9 84.2 98.2 92.7 93.2
RGNN-RL 99.3 95.7 97.7 95.4 84.5 96.2 94.6 98.4 84.6 95.6 84.1 97.9 98.0 96.7 98.7 82.9 96.1 79.6 98.6 93.4 93.4
RGNN-FL 99.3 95.4 97.6 95.2 84.7 96.1 94.6 98.4 84.7 95.4 84.0 97.9 98.0 96.8 98.8 82.6 95.9 79.3 98.5 93.7 93.3

Table 4: Classification results (AP in %) comparison with state of the arts on VOC 2012.

this new dataset, we simply followed the experimental settings in Section 4.3, aiming to test
whether RGNNs could successfully improve results from global and region-level fine-tuned
VGG networks (models without automatic region selection) on this dataset. We trained on
the training set and made evaluation by mean-AP over all categories on the validation set.
The global fine-tuned baseline VGG network had an mAP score of 65.8%. The region-
level fine-tuned VGG network gained a better mAP of 69.7%. The proposed RGNN-RL
and RGNN-FL further boosted the mAPs to 72.9% and 73.0% respectively. These results
verified the effectiveness of RGNN on more complicated large-scale dataset.

5 Conclusion
We have proposed a novel deep regional gating neural network (RGNN) framework for
multi-label image classification. Extensive experiments on popular benchmarks have clearly
demonstrated that RGNN can boost classification performance due to its natural and effec-
tive information fusion from automatically selected contextual regions. Moreover, RGNN
achieves this goal in an end-to-end learning manner with specially designed gate units and
loss functions, thus making it a generic framework to work with various region proposal
generation methods for improving image classification performance.
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