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We introduce the first model to perform weakly
supervised learning with Gaussian processes
(GPs) on up to millions of instances. The key
ingredient to achieve this scalability is to re-
place the standard assumption of MIL that the
bag-level prediction is the maximum of instance-
level estimates with the accumulated evidence of
instances within a bag. Given data set of N in-
stances X = [x1, · · · ,xN ] = {X1∪X1∪·· ·∪XB}
composed of B disjoint partitions, called bags,
and supervised by bag labels T = [t1, · · · , tB], we
propose the following model to infer a Bayesian
weakly supervised predictor

p(u|Z) =N (u|0,KZZ), (1)

p(f|u,X,Z) =N (f|KXZK−1
ZZu, (2)

diag(KXX−KXZK−1
ZZKZX)),

p(T|f) =
B

∏
b=1

Bernoulli(Tb|σ(fT
b 1)), (3)

where Z = [z1; · · · ;zP] with P � N is a tiny
pseudo data set called the inducing point set
and u the corresponding outputs. We refer to
this model as the Variational Weakly Supervised
Gaussian Process (VWSGP) 1. Here, Equations
1 and 2 constitute the sparse GP prior and Equa-
tion 3 is a Bernoulli likelihood ensuring the
model to predict binary outputs. Thanks to the
sum term fT

b 1 in the likelihood, this model can
be trained by closed-form variational inference
updates. Hence, keeping all parameters but one
fixed, the remaining parameter can be analyti-
cally fit to the global optimum. This virtue leads

1The source code of our model is publicly available under
https://github.com/melihkandemir/vwsgp

to charmingly fast convergence, fitting perfectly
to large-scale learning setups.

We evaluate our VWSGP on the Pascal VOC
’07 benchmark and two medical image analysis
applications: i) Diabetic Retinopathy screening
(DR), and ii) metastatic tumor detection from
histopathology images of lymph node tissues
(Lymph). While VOC ’07 consists of 19M in-
stances (2000 region proposals per image), DR
and Lymph have 361K and 1M instances, re-
spectively. The results are summarized in Ta-
ble 1. Our model proves to outperform various
scalable MIL algorithms, as well as state-of-the-
art adaptations of deep learning to weakly super-
vised learning.

Table 1: Bag-level average precision scores on
two medical data sets.

VOC’07 DR Lymph
VWSGP (Ours) 83.7 0.98 0.68

VGG-S [1] 82.4 - -
DMIL [4] 75.5 - -
mi-FV [3] - 0.92 0.48
e-MIL [2] - 0.93 0.61
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