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(a) Our loss is based on an
8-connected neighborhood.
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(b) Pairwise potential construction for an
edge with y∗k =+1 and y∗l =−1 follow-
ing Equation (1).

Figure 1: Non-submodularity of the joint loss augmented inference using
the same mapping to a set function for inference and loss functions.

Several non-modular loss functions have been
considered in the context of image segmentation.
These loss functions do not necessarily have the
same structure as the segmentation inference al-
gorithm, and in general, we may have to resort
to generic submodular minimization algorithms
for loss augmented inference. Although these
come with polynomial time guarantees, they are
not practical to apply to image scale data.

In this work, we first propose a supermodu-
lar loss function that is itself optimizable with
graph cuts. It counts the number of incorrect
pixels plus the number of pairs of neighboring
pixels that both have incorrect labels

∆(y∗, ỹ) = ∑
p
j=1[y

∗ j 6= ỹ j]+∑(k,l)∈E`
γ[y∗k 6= ỹk ∧ y∗l 6= ỹl ] (1)

where [·] is Iverson bracket, E` is a loss specific
edge set and γ is a positive weight. We may iden-
tify this function with a set function to which the
argument is the set of mispredicted pixels.

While being incorporated in a joint loss-
augmented inference leads to non-submodular
potentials, we therefore use the alternating di-
rection method of multipliers (ADMM) based
decomposition strategy (Algorithm 1). It con-
sists of alternatingly optimizing the loss function
and performing MAP inference, with each pro-
cess augmented by a quadratic term enforcing
the labeling determined by each to converge to
the optimum of the sum. In this way, we gain
computational efficiency, making new choices
of loss functions practical, while simultaneously
making the inference algorithm employed dur-

Algorithm 1 ADMM in scaled form for
finding a saddle point of the Lagrangian
L(ya,yb,λ ) = −〈w,φ(x,ya)〉 − ∆(y∗,yb) +
λ T (ya− yb)+

ρ

2 ‖ya− yb‖2
2

1: Initialization u0 = 0
2: repeat
3: yt+1

a = argminya−〈w,φ(x,ya)〉+ ρ

2 (‖ya− yt
b +ut‖2

2)

4: yt+1
b = argminyb−∆(y∗,yb)+

ρ

2 (‖y
t+1
a − yb +ut‖2

2)

5: ut+1 = ut +(yt+1
a − yt+1

b )
6: t = t +1
7: until stopping criterion satisfied
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Figure 2: The segmentation results of prediction trained with Hamming
loss and our supermodular loss.

ing training closer to the test time procedure.
We show improvement both in accuracy and

computational performance on the MR Grabcut
database (Fig. 2) and a brain structure segmen-
tation task, empirically validating the use of a
supermodular loss during training and the im-
proved computational properties of the proposed
ADMM approach over the Fujishige-Wolfe min-
imum norm point algorithm. We envision that
this can be of use in a wide range of ap-
plication settings, and an open source general
purpose toolbox for this efficient segmentation
framework with supermodular losses is available
for download from https://github.com/
yjq8812/efficientSegmentation.


