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Abstract

Tracking in urban street scenes is predominantly based on pretrained object-specific
detectors and Kalman filter based tracking. More recently, methods have been proposed
that track objects by modelling their shape, as well as ones that predict the motion of ob-
jects using learned trajectory models. In this paper, we combine these ideas and propose
shape-motion patterns (SMPs) that incorporate shape as well as motion to model a vari-
ety of objects in an unsupervised way. By using shape, our method can learn trajectory
models that distinguish object categories with distinct behaviour. We develop methods to
classify objects into SMPs and to predict future motion. In experiments, we analyze our
learned categorization and demonstrate superior performance of our motion predictions
compared to a Kalman filter and a learned pure trajectory model. We also demonstrate
how SMPs can indicate potentially harmful situations in traffic scenarios.

1 Introduction

Analyzing and predicting the movement of objects is a vital ability for self-driving cars or
autonomous mobile robots. Such systems need to be able to foresee potential collisions and
also react to possibly harmful situations. A common approach in many state-of-the-art vision
systems is to base motion prediction on tracking and to formulate object tracking as inference
in linear dynamical systems such as Kalman filters. Since these trackers typically assume
simple physical motion models, they cannot take into account the versatile set of motion
behaviors of the various object categories in an environment. For instance, these models do
not include potential changes in behavior such as objects that suddenly start moving.

In urban street scenes, the variety of possible objects and their motion patterns limits the
feasibility of manually engineered parametric models of motion behaviour. We propose an
unsupervised approach to learn motion patterns of object categories from example data. In
our approach, object categories are not limited to predefined classes. Instead, our approach
provides a categorization into objects with similar shapes and trajectories.
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Figure 1: Possible future motion predictions based on shape-motion patterns (SMPs). In
this scene, a car (yellow) is driving forward, another car (blue) is parked on the right and
next to the parked car a pedestrian (orange) is waiting. Our model predicts possible motion
behaviour even for static objects. Note that in this situation our model can indicate that the
standing pedestrian may walk onto the road.

For the shape of an object, our approach predicts a distribution over possible future mo-
tions. Based on this information, autonomous cars could assess, for example, if other traffic
participants could potentially interfere with the autonomous car. Fig. 1 illustrates an exam-
ple, in which our model provides informative predictions on the possible future motions of
cars and pedestrians in a traffic scenario.

Our approach is based on object tracks which are represented by 3D shape and position
trajectories. We propose to cluster these tracks hierarchically: first into clusters of similar
shapes, then into typical motion patterns within a shape cluster. These learned shape-motion
patterns (SMPs) allow for predicting the future motion of objects and for modelling their
possible future behaviours based on their shape. In experiments, we evaluate the accuracy of
our motion prediction and demonstrate superior performance towards a Kalman filter based
tracker and a learned pure trajectory model. We also analyse the categorization found by our
unsupervised learning approach.

In summary, we make the following contributions in our work: (1) We propose a method
for unsupervised learning of shape-motion patterns of objects in urban street scenes from
stereo video. (2) We use the learned patterns to predict the future motion of novel objects
from the learned categories. (3) Our approach is not restricted to specific shapes or moving
objects. From a shape, it can model possible future motions – even for static objects.

2 Related work
Current research on motion prediction can be structured into three layers of complexity [13]:
Starting from dynamical models over maneuver-based to complex interaction-aware models.
The majority of trackers (e.g. [7, 11, 14, 25]) use Kalman filters that model motion using
basic physical state dynamics. Maneuver-based methods (e.g. [2, 10, 19, 28]) find patterns
in previously observed trajectories to predict the future evolution of the trajectory. Many
current maneuver-based models focus mostly on a single class of objects, e.g. vehicles or
pedestrians. Interaction-aware approaches (e.g. [12]) additionally take scene context into
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account, e.g. information about road crossings or relative positions of other vehicles. Typi-
cally, previous interaction-aware approaches have been limited to a small variety of specific
scenes due to the high complexity of acquiring training data and modeling scene variations.
Our method is maneuver-based with the capability of handling a variety of objects. Com-
pared to previous maneuver-based methods, we additionally distinguish the observed objects
by their shape which allows us to assign object category-specific motion patterns.

While most related work focuses on supervised methods (e.g. [17, 21]), only a small
number of approaches tackle the semi-/unsupervised categorization of objects [22, 25]. Te-
ichman and Thrun [23] propose a semi-supervised approach to classifying objects in street
scenes into a set of given categories. Their approach is based on laser data, which is more ac-
curate than the stereo data used in our method. They combine shape and appearance features
to classify objects [25] in single frames of combined laser and vision data. Tao et al. [22]
propose a semi-supervised learning method to classify 3D laser measurements and RGB-D
images of objects into a set of given categories. The method represents shapes by hierar-
chical matching pursuit features [1] on reprojected depth images, and employs a variant of
online star clustering [8] to build up a bipartite graph clustering of the shapes. In contrast to
our approach, this method does not explicitly take trajectory information into account. Luber
et al. [15] cluster moving objects into categories based on their time-varying shape. They
use 2D laser data in a horizontal plane to detect and track objects, and to describe their 2D
shape. The primary goal of this method is to provide a probabilistic model for classification
of newly observed laser tracks. Our method observes shape from noisy 3D stereo data and
clusters objects based on shape and additionally trajectory information. Compared to Luber
et al. [15] we provide probabilistic SMPs that allow for predicting possible future trajectories
even for static objects.

Several approaches have been proposed that learn motion models of objects in order to
recognize events or predict their future motion. The early work of Johnson and Hogg [9]
models the probability density functions of observed 2D image trajectories of tracked pedes-
trians using vector quantisation. Training examples are labelled by event types and newly
observed trajectories are classified via nearest neighbors. Joseph et al. [10] learn a Bayesian
non-parametric model of GPS position trajectories. Kooij [12] propose to use a Dirichlet
process prior to model a mixture of linear dynamic systems. Their system is specifically de-
signed for tracking persons in camera images. In contrast to the above methods, our method
exploits 3D shape to further distinguish a variety of objects and their motion behaviour. By
this, we also improve motion prediction.

3 Hierarchical Motion Model Clustering

We propose to describe objects in a hierarchical approach, as visualized in Fig. 2. In the
following, we explain the steps in detail.
Training Phase: In a training phase, we learn SMPs from tracked objects.
1. First, we run a tracker on the training set. Different kinds of trackers can be used, e.g.

detection-based or generic trackers. We solely require tracks with position estimates and
3D segments. By sampling from the tracks, a training set is gathered. A training example
contains a shape model of the object, together with a sub-trajectory (see Sec. 4).

2. We cluster the instances from the training set based on their shape using Affinity Prop-
agation (AP, [4]). The shape clusters cS ∈ CS represent categories of objects, also dif-
ferentiating viewpoints within an object class. We choose AP as clustering algorithm
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Figure 2: Motion prediction pipeline based on hierarchical clustering. Steps enumerated as
in Sec. 3.

because it automatically estimates the number of clusters and provides cluster representa-
tives, which we will need in the recall phase as cluster exemplars. Furthermore, we desire
objects which are fully observed as cluster representatives. With the preference parameter
of AP we can favour fully observed objects proportionally to the degree of observation.
We optimize the parameters of AP by minimizing the prediction error (see supplementary
material).

3. Various instances in each shape cluster can have different motion models, e.g. a car can
be parked or drive with a high velocity. Hence, we cluster the trajectories m ∈M(cS) of
each shape cluster cS using AP to obtain shape-specific trajectory clusters cM|cS ∈ CM|cS .

4. Each trajectory cluster in a shape forms one SMP p =
(
cS,cM|cS

)
. The trajectories in the

SMP are described by a Gaussian distribution on the past and future positions relative to
their current position.

Recall Phase: Using our learned model, we classify novel object shapes and trajectories
into one of the learned SMPs in the following way (see Sec. 5):

5. We gather shape and trajectory information from the same kind of tracker that we use in
the training phase. This gives us shape information combined with trajectory information.
However, in contrast to the training phase only the past trajectory is available.

6. By comparing the integrated shape of the new instance to all cluster centers we extract a
subset of shape centers which are most similar to the observed object (see Sec. 5.1).

7. We compare all motion models from this subset of shape clusters to the observed trajec-
tory and select the most similar one.

8. Based on the selected motion model we predict the future motion (see Sec. 5.2). Further-
more, we use the subset of motion models from the previous step to infer a probability
distribution describing where the object could move based on its shape.
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Figure 3: Schematical structure of a Generalized Christmas Tree.

4 Shape and Motion Features

4.1 Shape Features

We choose Generalized Christmas Trees (GCTs [17]) as shape representation. GCTs allow
for aligning and integrating individual frame stereo reconstructions on the object over multi-
ple frames, which smoothes out noise and enables us to describe shape variation in non-rigid
parts. They provide a fixed-dimensional representation irrespective of the object shape and
size. Recently, it was demonstrated that GCTs can be used as shape descriptors for various
machine learning tasks such as classification, orientation and body pose estimation [17].

As visualized in Fig. 3 (a), a GCT consists of several height layers, which are further
subdivided into angular bins around the vertical axis. Each angular bin maintains statistics
on the distance of the observed 3D points on this part of the object surface to the GCT center
axis (Fig. 3 (b) and (c)). In order to improve robustness, we adapt the center during tracking
(see supplementary material for details). We represent these statistics either by the median or
by a histogram of the points. The median-based representation is very well suited for rigid
objects, while variations caused by non-rigidness are better captured using the histogram
representation. To achieve a high granularity for thin objects and to increase size-invariance,
we use a log-polar representation.

We do not assume that tracking directly provides a canonical orientation for the ob-
jects. Instead, we propose to extract a repeatable orientation estimate from the GCTs in
order to make the shape features invariant to the object’s orientation and to align the tra-
jectories within a shape cluster. Note that the estimated orientation does not need to be an
interpretable orientation, e.g. the object’s moving or viewing direction. It only needs to be
consistent across similar shapes and trajectories. Since we also want to represent static ob-
jects, we do not take the trajectory into account. We robustly determine the dominant plane
within the GCT shape model using RANSAC [3] and use its normal as orientation estimate
(see supplementary material for details). Ambiguities in the dominant plane are handled by
including multiple possible orientations during training.

More formally, a GCT yields for each height layer i ∈ {1, . . . ,N} and orientation bin
j ∈ {1, . . . ,M} either a median distance s(i, j)∈R or a B-dimensional histogram s(i, j)∈RB

of distance values. We make the GCT orientation-invariant by aligning the first orientation
bin with the dominant orientation. We compare two GCTs s and s′ by the average distance
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Figure 4: Visualization of tracklets. Red dots visualize object positions.

of the orientation bins [17], where d(x,y) denotes the distance between bins x and y,

d(s,s′) =
1

NM

N

∑
i=1

M

∑
j=1

d(s(i, j),s′(i, j)). (1)

Mitzel et al. [17] propose to compare median-based GCTs using the Euclidean distance and
histogram-based GCTs using histogram intersection. Note that the objects are typically only
partially observed, such that larger parts of the GCTs are not filled with observed values. Us-
ing zero values as default would strongly affect the distance measure between similar shapes,
if the partially observed region does not coincide fully. Hence, empty, i.e. unobserved, bins
are filled with a default median distance or default histogram, respectively. The optimal
value for the default distance or histogram is estimated on a training dataset. We include
further details on distance measures and default values or histograms in the supplementary
material.

4.2 Trajectory Features
Motion is represented by sub-trajectories m = (xt−T ,yt−T , ...,xt+T ,yt+T ), which we denote
as tracklets. They range within a fixed interval of past and future frames T around each
current frame at time t. Tracklets include the projected xy-positions on the ground plane at
associated time steps. As suggested in [28], this simple representation can model all types of
motion, even ones that cannot be described using constant velocity or acceleration models.

In order to describe the tracklet in an object-centric and orientation-invariant way, we
express the tracklet positions in a local object coordinate frame. The origin of this frame is
placed at the current center position of the tracklet and aligns the tracklet’s x-axis with the
orientation of the object shape as estimated in Sec. 4.1. For AP clustering, we determine the
Euclidean distance of tracklet positions that correspond by time steps.

5 Prediction

5.1 Motion Model Lookup
To match a motion model to a newly observed object instance with shape feature s and
trajectory feature m, we first find the subset CS(s) of the shape clusters CS which contain the
most similar shapes to s,

CS(s) :=

{
cS ∈ CS

∣∣∣∣∣d(s, ŝ(cS))< λ min
c′S∈CS

d(s, ŝ(c′s))

}
, (2)
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where ŝ(cS) is the exemplar shape of cluster cS and parameter λ controls the number of
closest shape clusters.

Among the trajectory clusters CM(s) contained in the shape clusters CS(s), we find the
best matching motion cluster ĉM with respect to the observed trajectory mt−T :t from the T
past time frames by

ĉM(s,mt−T :t) = argminc′M∈CM(s)
∥∥mt−T :t − m̂t−T :t(c′M)

∥∥
2 , (3)

where m̂(cM) is the exemplar trajectory of cluster cM .
While we chose only complete sub-trajectories for our training data the trajectories of the

newly observed object instance can be shorter. In that case we shorten the trajectory models
to the length of the trajectory of the newly observed object.

5.2 Motion Prediction
Based on the selected trajectory cluster ĉM(s,mt−T :t), we predict the future motion of the
object. We model the motion distribution within the trajectory cluster as Gaussian in the xy-
positions per time step with mean µt−T :t+T and covariance Σt−T :t+T . The mean future motion
of the observed object is then obtained by conditioning on the past observed trajectory,

µa|b = µa +Σab Σ−1
bb (mb−µb), (4)

where we used the shorthands a := t + 1 : t +T and b := t−T : t. If only part of the past
trajectory is observable, we can condition on this shorter history as well through proper
Gaussian marginalization.

6 Experiments
We evaluate our approach qualitatively and quantitatively on the KITTI tracking dataset [6].
This dataset contains 21 training sequences recorded with a front-facing stereo camera on a
driving car in urban street scenes. We use the training sequences, since the images are anno-
tated with ground truth object bounding boxes (e.g. cars, vans, trucks, cyclists, pedestrians)
and their correspondence between frames.

We employ two kinds of trackers for our evaluation: An "oracle" tracker uses the an-
notated bounding boxes and correspondences as object observations within a multi-object
Kalman filter tracking framework. The Kalman filter propagates the state with a constant-
velocity motion model. Stereo depth [5] is used to segment and localize the objects. These
3D shape measurements are aligned and integrated into GCT shape models over time [17].
The second tracker is a tracking-by-detection approach that extends the QPBO tracker in [14].
We use object detections for cars, pedestrians and cyclists [27] and fuse these detections
with 3D region proposals [18], which provides a 3D shape segmentation of the detected ob-
jects. We associate detections and proposals based on spatial proximity and image-domain
bounding-box overlap. The segmented shapes are aligned and integrated into GCT models.

In the following, we analyze the clustering achieved by our unsupervised learning method,
and assess the accuracy of our motion prediction approach.

6.1 Qualitative Feature Evaluation
We use the oracle tracker to obtain shape features and embed the features with t-SNE [26]
to visualize their expressiveness. The left visualization in Fig. 5 shows a t-SNE embedding
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Figure 5: t-SNE embedding of the feature space. Histogram-based GCTs without default
values (left) and with default values (right).

Cluster 6
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Figure 6: Confusion matrix (column-normalized) and mean images of a shape clustering.

of the shape features represented as histograms. It indicates that objects of different size can
be kept apart using the shape features. The distinction between similar sized objects, e.g.
pedestrians and cyclists, is not that strong but recognizable.

Fig. 5 demonstrates the importance of using appropriate default values for the unobserved
parts in the GCTs. We can see that using default values, the instances belonging to the same
object class get mapped closer to each others than without default values. Fig. 6 shows
the confusion matrix between the labelled categories and the clusters generated through AP
on shape features. First, we can see again that large and small objects are separated well,
while objects of similar size and shape are mixed. We also visualize the categorization
of the clusters with the mean of the image patches within a cluster. Clusters 6 and 8 are
both homogeneous car clusters but vary in viewpoint. Clusters 23 and 32 contain mainly
pedestrians and cyclists, but the clusters are from different viewpoints. Furthermore, the
mean image of cluster 32 reveals a similarity between pedestrians and cyclists: They can
appear similar from the front.

6.2 Motion Prediction
We evaluate the accuracy of our SMP-based motion prediction approach on the KITTI track-
ing sequences. We represent the shapes with histogram-based GCTs and use histogram inter-
section as distance measure [16]. For comparison, we also provide results with a “motion-
only“, maneuver-based approach that performs AP clustering just on the trajectories, but
that also uses the motion prediction approach described in Sec. 5. It matches trajectories
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Figure 7: Long-term prediction error depending on the prediction time.
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Figure 8: Prediction error for two example trajectories.

directly to the trajectory clusters without regarding shapes. We perform leave-one-out cross-
validation and provide average results over the validations.

Fig. 7 visualizes the performance of our pipeline with a lookahead of up to 2 seconds
(T = 20) which is regarded as long-term prediction by [20]. The diamonds denote the 90%
quantile. In Fig. 7 (a), we use the oracle tracker to train our SMP and the motion-only clus-
tering approaches. As evaluation we compare the Euclidean distance between the predicted
positions and the tracker output. Hence, in this experiment the methods learn to imitate the
estimates of the oracle tracker. We see that the SMP-based and the motion-only approach
perform better than the Kalman filter. We further observe that reasoning on shape increases
performance, especially for the less frequent object categories like pedestrians whose tra-
jectory models differ significantly from the shape-independent trajectory models. Note that
while the Kalman filter is limited by its motion model to linear extrapolations, both learning
approaches can use the trajectory history to predict more complex future motion, e.g. when
an object is moving along a curve. The SMP approach clusters the available trajectories
within a shape cluster, such that it has less data available to find trajectory clusters. The
motion-only approach can transfer a trajectory model learned from a car to a cyclist which
is beneficial for less data but biases the motion models.

Fig. 8 shows the prediction error for two moving objects along their track (frame 0 means
initialization frame). The left example shows the error for a car which overtakes on the right
with a high speed (traj. 0, seq. 3). The right example is a cyclist that drives towards the
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camera (traj. 2, seq. 19). The Kalman filter requires several frames to initialize its position
and velocity estimate for prediction. Our method can quickly obtain a shape model, from
which it seems to infer predictions better in both examples.

In Fig. 7 (b), we train SMPs and the motion-only model in an unsupervised way using
the tracking-by-detection Kalman filter tracker. In this experiment we evaluate against the
annotated ground-truth. The SMP-based prediction deviates by 1.49m from the ground-truth
while the motion-only prediction deviates by 1.90m. We attribute this to the capability of
SMPs to capture shape and trajectory outliers in dedicated clusters.

The deviation between Kalman filter and SMP predictions is only about 20cm for pedes-
trians on a 2s lookahead. We assume this is due to the fact that the observed motions are
quite consistent and fairly linear.

Building clusters from example data consisting of 2000 sub-trajectories takes several
minutes on our machine (quad core with 3.4GHz, 16GB memory). To enrich the data further
we propose to learn incrementally, e.g. with group induction [24]. Predicting motion based
on a given model requires |CS| shape distance comparison to find the closest clusters and it
requires |CM(s)| trajectory distance comparisons for each selected shape cluster. Since the
number of clusters is small, this process takes only few milliseconds.

7 Conclusion

In this paper, we propose an unsupervised learning approach that categorizes objects in urban
street scenes based on their shape and motion. We use a two-layer hierarchical clustering
process, in which we first distinguish objects by shape, and then cluster the trajectories within
each shape cluster, forming shape-motion patterns (SMPs). Our approach uses stereo vision,
which provides noisy and partial 3D reconstructions of the objects. These reconstructions are
aligned and fused in GCT shape models in order to smooth out noise and increase the level
of completeness of the shape model. The motion of the objects is tracked using a Kalman
filter to obtain tracklets. Lastly, we propose a method to predict the motion of objects based
on their shape and motion similarity with learned SMPs.

In experiments, we analyse the suitability of our shape features for the clustering task. We
also assess the accuracy of our SMP-based motion prediction and compare our method with
predictions based on motion-only clustering and Kalman filters. Our evaluation demonstrates
that SMPs can outperform motion-only and Kalman filter prediction.

In contrast to a Kalman filter based tracker, our method can provide a versatile set of
learned motion patterns for a recognized shape, which can be used to assess potential fu-
ture motions of objects. Our method is not restricted to moving objects in contrast to pure
trajectory-based methods. It can also provide potential motions based on the shape, even if
no prior information on the motion of the object is available or the object is static.

In future work, we plan to explore the use of further cues such as scene context to further
distinguish the behavior of objects. Our method could also extend single-class maneuver-
based trackers with motion models for a larger variety of objects.
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