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Abstract

We address the problem of robust visual data association across seasons and view-
points. The predominant methods in this area are typically appearance–based, which lose
representational power in outdoor and natural environments that have significant varia-
tion in appearance. After a natural environment is surveyed multiple times, we recover
its 3D structure in a map, which provides the basis for robust data association. Our ap-
proach is called Reprojection Flow, which consists of using reprojected map points for
appearance–invariant viewpoint selection and robust image registration. We evaluated
this approach using a dataset of 24 surveys of a natural environment that span over a
year. Experiments showed robustness to variation in appearance and viewpoint across
seasons, a significant improvement over a state-of-the-art appearance–based technique
for pairwise dense correspondence.

1 Introduction
The capacity to register observations of a natural environment across seasons has been
achieved in Nature, and may be possible to automate using machines. Evidence suggests
it can be solved using information primarily from vision. Clark’s nutcrackers cache over
30,000 whitebark pine seeds in autumn, which sustain them through winter, spring, and
summer [8, 22]. An average of 1-15 seeds are stored per cache [22], which are spread out
over a large geographical area (rather than clustered) [2]. Nutcrackers have an uncanny spa-
tial memory to achieve this feat [11]. They integrate spatial information (before shape and
appearance) of environmental cues like trees, rocks, and logs to find caches, including those
that are out in the open or buried under snow [1, 19] (also see [5] for a nice video). A similar
feat may be possible with mobile robots (and other portable cameras) if they utilize scene
structure in a similar way.

Images captured in outdoor and natural environments accumulate many kinds of varia-
tion in appearance, which limit the effectiveness of appearance for registering scene contents.
The strength of illumination, the locations of shadows, and the type of weather vary between
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Figure 1: Odd behavior can be observed when image alignment is appearance–based. Here
tree branches are warped into foliage. The target alignment, in contrast, retains scene struc-
ture; the foreground trees are aligned despite their significant variation in appearance.

each survey. Over longer time scales, seasonal changes in foliage may manifest as differ-
ences in size, shape, and color. Noise accumulates with water droplets, sun glare, and debris.
Other changes in natural environments contribute. Furthermore, dynamic processes diminish
the possibility of capturing scenes from the same viewpoint. Cumulatively, the variation in
appearance of natural environments represents a formidable challenge to data association.

The difficulty in using appearance for correspondence may be due to a misattribution
of the key source of information to that. Across seasons, for example, several trees could
appear leafy with a bright skyline in the summer, yet bare with the sky shining through
them in winter (as in, e.g., Fig. 1). The winter image may best match the appearance of the
summer image if the tree branches are warped into foliage. As humans, however, we know
this is incorrect. We have experienced many trees (in the ways our sensorimotor repertoire
allowed). Consequently, we know what a tree is, that it has a structure, that it may abscise
its leaves in winter, etc. The true correspondence for these images would align the branches
from one to parts of the dense foliage of the other, leaving the tree structures intact.

Identifying accurate correspondences may not, however, require categorical (or seman-
tic) knowledge of things; prior experience may be enough. Trees keep the same position
between observations, as do rocks, logs, the landscape, and many other objects that lack
agency. The positions of things can, independently of appearance, indicate correspondences
between images. A localized observer may be able to exploit this information to acquire
fine–grained correspondences of things that appear substantially different.

This paper presents Reprojection Flow, a method that exploits the spatial information in
a map to achieve image registration across seasons. To enable its use, first image registration
is performed between surveys to acquire inter-survey observations of Kanade-Lucas-Tomasi
feature tracker [16] (KLT) points, and then visual simultaneous localization and mapping
(SLAM) is applied to acquire one map for all the surveys. Reprojection flow consists of two
steps: 1) identifying images of the same scene by the co-visibility of reprojected map points;
and 2) using reprojected map points to initialize and constrain image registration. Both
techniques are independent of appearance (given the map and the camera poses). In tests with
surveys of a natural environment, this approach significantly improves dense correspondence
across seasons. It also provides robustness to changes in viewpoint.

2 Related Work
There is a broad literature on robust data association for natural environments. Methods use
the environment appearance and structure to varying degrees. A recent survey provides a
comprehensive review on visual place recognition [15], which shows that the central com-
ponents are a map and a belief in whether the incoming visual information is in the map.
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Among the state-of-the-art, CNNs for appearance–based place recognition have been shown
to outperform other techniques (e.g., SeqSLAM [18]) that are designed for robustness to
changes in appearance [21]. The descriptor provided by the third layer of a CNN provides
the right balance of specificity and generality to recognize many places across seasons. This
supports the idea that methods designed for scene categorization can also work well for scene
recognition across major changes in appearance.

Image registration using SIFT Flow is driven by a similar idea, which is designed for
scene correspondence [12]. That is, it can register images of different scenes that have a
similar appearance, but it also works well for aligning images of the same scene that have
significant variation in appearance. For example, [6] showed that the method is robust to
some changes in appearance of a natural environment. Scene structure provides the visual
anchors through which spatial constraints pull the rest of the image into alignment. More
work is, however, needed to precisely align images that are more than a few months apart.

Several recent techniques in image registration have built on the idea of matching whole
images worth of point–based features [10, 23]. Instead of using image pyramids, De-
formable Spatial Pyramids can be used to achieve scene correspondence much faster than
SIFT Flow [10]. The method enforces spatial coherence by registering blocks of an image,
rather than using spatial constraints between individual pixels. Because the finest layer of
registration also lacks spatial constraints, the method is fast, but it loses precision.

Other techniques have sought to improve SIFT Flow by replacing the descriptor. In case
images have large degrees of rotation, image registration based on the Daisy Filter can be
applied [23]. Yet, this and many other predominant image descriptors are hand-engineered,
which has motivated [13] to investigate the use of CNN features for image registration. For
registration tasks, they found that SIFT Flow performs comparably with either SIFT features
or CNN features. In some cases, correspondence may be made more precise by matching
generically spaced patches between images, rather than grid–sampled keypoints [7].

Large image collections of the same place may enable us to see the general trend of how
a scene changes over time (i.e., time-lapse mining [17]). Using that approach, they estimate
a depth map to combine images. An image will be part of the time–lapse if it has SIFT
features that match the majority set. One challenge is how to utilize the rest of the images.
Ideally, every image would be part of the final result.

FlowWeb has been proposed to achieve consistency among a large set of images of the
same category of thing [24], which takes as input the flow labels from individual image reg-
istrations and outputs the corrected, consensus flow labels. The key idea is that alignment
quality between an image pair can be measured using consistency with a third (or more) im-
age. This same idea can be used to exploit 3D semantic appearance for aligning objects [25].
Their aim is to learn the 3D semantic appearance of things (using 3D CAD models) in or-
der to overcome variation in appearance and viewpoint, where other techniques (like SIFT
Flow) may fail. A CNN is trained to learn dense correspondences using two images from a
category of thing with a 3D model from the same category and viewpoint.

Reprojection Flow is complementary to techniques for pairwise dense correspondence.
It builds on high quality alignments between near–time surveys (within a couple months) in
order to align surveys further apart in time. Independently of appearance, it identifies which
scenes to match between two surveys. It also bootstraps the alignment process by exploiting
the sparse correspondences of reprojected map points.
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Figure 2: Sparse image registrations (red arrows) between near-time surveys are used to map
KLT points between surveys. These measurements are used with camera pose estimates from
each survey to create a multi-survey map. The map’s highlighted area is the foreground.

3 Methodology
A map can make precise, robust data association possible, but acquiring one that is composed
of landmarks from different seasons is a feat in and of itself. First, images are registered (low-
res) between near–time surveys to identify images of the same scenes (aided by GPS). Full
resolution image registration is performed on the set that aligns well in order to acquire inter-
survey observations of KLT–tracked landmarks. A map is recovered from the set of intra-
and inter-survey landmark observations using visual SLAM. Reprojection Flow uses the map
to perform appearance–invariant viewpoint selection and data association. See Fig. 2.

3.1 Initial Image Registration
This paper applies the SIFT Flow dense correspondence algorithm [12] 1) to perform an
initial image retrieval; 2) to acquire inter–survey observations of KLT points; and 3) with
Reprojection Flow for dense correspondence across seasons. SIFT Flow aligns whole im-
ages using appearance ‘anchors’ to bring the rest of the image into alignment. Because the
method is designed for nonrigid dense correspondence, it works well for matching images of
different scenes. In this work, however, we are interested in acquiring dense correspondence
for images of the same scenes. Therefore, we extend SIFT Flow by adding basic feature
matching constraints to it, including epipolar constraints and match consistency constraints.

SIFT Flow finds a dense correspondence between two images, Ip, Iq, using a Markov
Random Field (MRF). In an MRF, the pixels of Ip correspond to a grid of variables with
constraints among neighbors, in which the goal is to assign each variable to the most likely
hypothesis of a set. For the dense correspondence problem, a hypothesis is a flow vector that
matches a pixel in Ip to a pixel in Iq. A flow vector for a pixel, p = (xp,yp) ∈ Ip, is wp =
(up,vp), where up,vp ∈ [−h . . .h] and the corresponding pixel is q = (xp +up,yq + vp) ∈ Iq.

A flow vector, wp, becomes part of the output dense correspondence if it minimizes the
alignment energy, E(w). The alignment energy is the total cost of all the constraints in the
MRF for a particular dense correspondence, w. The constraints consist of a data term, a
regularization term, and a spatial term, as:

E(w) =∑
p

min(|Sp(p)−Sq(p+wp)|1, t)∗ epi+ cyc (1)

+∑
p

ν |up + vp|+ ∑
r adj. to p

min(α|up−ur|,d)+min(α|vp− vr|,d)

The data term is defined using the L1 distance between SIFT descriptors [14], which is
extracted at each pixel to form SIFT Images Sp and Sq. The parameters d = 10200, α = 255,
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ν = 0.255 were experimentally determined. The truncation term t is the median of all the
descriptor distances computed from Ip to Iq. The hypothesis space, h, was decreased from
11, 5, 3, to 1 in an image pyramid with four layers. SIFT Flow minimizes the alignment
energy for the whole image to produce the dense correspondence.

Epipolar constraints are added to this process to improve dense correspondence of real
scenes. For real scenes, if matches for a subset of pixels are known, the rest are likely to lie
on epipolar lines. This constraint is used to improve dense correspondence as the flow result
is propagated up the image pyramid. Given a flow result, epipolar lines are estimated and
used to weight the data terms of the MRF. The weight epi = 1−N (µ,δ ), where µ is the
distance to the epipolar line from q and δ = 2.5.

Match consistency is implemented to bring the Ip → Iq correspondence in agreement
with the correspondence in the reverse direction. It helps to improve correspondence ac-
curacy and reduce correspondence failures (due to perceptual aliasing). The forward and
reverse alignments are consistent if the flows of their corresponding pixels sum to zero. The
cycle weight is defined as cyc = (wr−wp(r+wr))∗ c, where c = 16 (a small fraction of α
to gradually make the alignments consistent after several iterations). Match consistency is
only used at the top layer of the image pyramid in order to reduce computation time.

3.2 Visual SLAM

Graph–based visual SLAM is used to capture the structure of the environment in the form
of hundreds of thousands of 3D visual landmarks, which we use in Reprojection Flow to
guide data association across seasons (see [6] for a detailed formulation of the SLAM factor
graph for one survey; here we add constraints between surveys). The challenge for surveys
of outdoor and natural environments is that traditional feature matching between them lacks
robustness to variation in appearance. Therefore, inter-survey observations are acquired by
mapping KLT points between surveys using image registration, which is more robust to
variation in appearance (but only over short time intervals).

Visual features are extracted from each image and then tracked for the duration that they
are visible using KLT. To acquire a set of points that are distributed in the scene, images
are divided into a 12× 20 grid and at most five Harris corners are extracted per cell. New
features are only extracted from cells with fewer than five features being tracked. Up to 300
visual features are tracked per image.

Inter-survey observations are acquired by mapping the KLT points between images using
image registration. Only the best alignments are used because many images have significant
alignment noise. Image alignment quality is measured using alignment energy and match
consistency at the top layer of the image pyramid (i.e., low resolution). For an image Ip

in survey 1, a local search for the image Iq of survey 2 that best matches Ip is found. If
the alignment energy is < 1120000 (which mostly corresponds to high-quality alignments)
and the consistency is ≥ 95% (that is, 95% of pixels have error ≤ 1 pixel), full resolution
image registration is performed, and the resulting flow field is used to acquire inter-survey
observations. Only the inliers according to epipolar geometry and match consistency are
used for the optimization. Optimization (as in, e.g., [3]) is applied to the trajectories and the
maps from all the surveys in order to bring them into alignment.
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Figure 3: Reprojection Flow: left) Finding the most similar view by maximizing co-visibility
using the G-statistic, compared to a closest pose heuristic, and a heuristic to maximize the
number of overlapping points. The contingency tables are shown for each case. right) Using
reprojected map points to guide image registration. The KLT points of the reference image
are shown projected onto the unaligned images.

3.3 Reprojection Flow
Given the optimized map and camera poses, reprojected map points are used for both view-
point selection and the registration of images (see Fig. 3). Both provide information that is
independent of scene appearance. We call this technique Reprojection Flow.

3.3.1 Viewpoint Selection

A map’s first use is in identifying images of the same scene from multiple surveys. An image
from one survey is the prototype scene, which guides the selection for the rest. This task is
typically nontrivial using appearance–based techniques due to the significant variation in
appearance between surveys. A few heuristics are available if a consistent map and poses
are available. The pose closest to the reference pose may be an obvious choice, but the
weights for the position and the orientation depend on the locations of scene contents. A
different heuristic that accounts for the contents of the scene is to use the pose with the most
overlapping landmarks. However, the best image in that case may have a large difference in
pose and may capture many other landmarks. The best pose maximizes co-visibility.

Co-visibility is the property of two images that the set of landmarks seen and the set of
landmarks not seen are similar. That is, high co-visibility indicates that a similar set of map
points from the two surveys projects onto both images. For each map point, there are four
possibilities: 1) the point projects outside of both images; 2) and 3) the point projects onto
one and not the other; or 4) the point projects onto both images. This information is captured
in a contingency table of entries Ni j, each of which indicates the number of landmarks that
match one of the four possible cases of co-visibility:

N00 N01
N10 N11

,

The degree with which two poses maximize co-visibility is measured using the G-statistic.
The method is used to calculate the degree with which two variables are dependent, i.e., the
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p-value. In robotics, this technique was originally proposed by Sukhoy et al. [20] for co-
movement detection. Here, the image with the highest G-statistic maximizes co-visibility:

G = 2
1

∑
i=0

1

∑
j=0

Ni j ln
(

Ni j(N00 +N01 +N10 +N11)

(N0 j +N1 j)(Ni0 +Ni1)

)
, (2)

3.3.2 Image Alignment

Map points define the positions of things, which can indicate correspondences between im-
ages when reprojected onto them. This reprojection flow directly provides sparse data asso-
ciation among images of the same scene. Indirectly, it provides epipolar constraints for the
rest of the image, it anchors the match consistency constraint, and it centers the hypothesis
space on the correct alignment. Collectively, these techniques improve image registration
across seasons because they maximize the use of appearance–invariant information.

This approach relies on the correctness of the map points and the camera poses. To
minimize the effect of reprojection error, only the original KLT points from the two to-
be-aligned images are used (as opposed to all the map points at the same scene). Thus, the
reprojection error for each point is only incurred in one direction. Also, the outliers according
to epipolar geometry are eliminated from the set. Beyond these constraints, some error is
allowable because image registration proceeds through a coarse-to-fine image pyramid.

The direct constraint is applied to image registration through the data term of the MRF.
The data term is replaced instead of weighting it to eliminate the effect of appearance on
the correspondence. For a reprojected pixel location, r, the constraint is defined as (1−
N (r,σ))× t, where σ is the ratio of the reprojection error to the image scale.

4 Experiments

4.1 Dataset
This paper analyzes data from 24 100m-long surveys of a natural environment captured over
the span of a year. An autonomous surface vehicle (ASV) was deployed roughly bi-weekly
on a lake to capture image sequences of its lakeshore. The platform was the Kingfisher ASV
from Clearpath Robotics. As it is moving, the boat stores 704x480 color images from the
camera, distances to everything within 20m from the laser, and information about its position
from the GPS, the inertial measurement unit, and the compass.

The boat autonomously surveyed the lakeshore. As it moved along the perimeter, its
pan-tilt camera captured images of the shore while a state–lattice motion planner maintained
the boat’s distance to it. A 10m distance from the shore was sufficient to avoid most debris in
the shallower water, while it maximized the coverage of the shore in each image. Sometimes
it was necessary to manually correct the boat’s trajectory, e.g., around fishing lines.

4.2 Viewpoint Selection using Reprojection Flow
A large–scale evaluation was performed to determine the benefit of viewpoint selection using
Reprojection Flow. Standard SIFT Flow was used as the image alignment method in this
analysis. Given an image, Ip, from one survey, it is aligned (low-res) with an image Iq from
a different survey, where Iq is determined by the viewpoint selection method. If Ip and Iq
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Figure 4: The average improvement in alignment energy of viewpoint selection using Repro-
jection Flow over viewpoint selection using the closest pose heuristic. Each square represents
the result for aligning images from two surveys. A total of 24× 23 survey comparisons make
up this analysis. Lower is better. (Best viewed in color.)

capture the same scene, the alignment energy will be lower than if they are slightly shifted
due to the regularization energies. In aligning all the images from one survey to another, both
Reprojection Flow and the closest pose heuristic are used to separately determine which Iq

is aligned with Ip. The average difference in their resulting alignment energies is computed
for each such comparison. A total of 24*23=552 survey comparisons make up this analysis.

Figure 4 shows the result. Out of 552 survey comparisons, 547 reach lower alignment
energies on average using Reprojection Flow. Our method chooses images that are, on av-
erage, closer to the same scenes. This is also true across seasons. Thus, the task of image
registration is simplified because the best images are used for the alignment.

4.3 Consistency of Image Registration Across Seasons
We next tested how well Reprojection Flow can drive image registration across seasons. Al-
though hand–labeled point correspondences are typically used to evaluate alignment quality
(as in [24]), finding any correspondences is difficult if the images capture a natural envi-
ronment and span seasons. Instead, the set of alignments that were used to create the map,
specifically their KLT points, were used here. For one such image registration Ip→ Iq, the
image I j from survey j with the highest co-visibility to Ip is found, and then image regis-
tration is performed for Ip→ I j and Iq→ I j. This makes a three-cycle between the images,
which indicates alignment quality based on how consistent the flows are [24]. The more
points closer to zero, the more consistent the image registrations. Using surveys that span
j = 4 to 6,9 to 11, . . . , and 34 to 36 week differences, we computed the average alignment
consistency of standard SIFT Flow and our method.

Table 1 shows the results. Reprojection Flow with constraints makes image registration
significantly more consistent, on average, than SIFT Flow. Whereas SIFT Flow loses consis-
tency across seasons, Reprojection Flow retains about the same level of performance. This
is because the structures are better preserved across seasons.

The difference in alignment quality for the two approaches is shown in Fig. 5. The
alignment quality was manually labeled for three different surveys across space and time.
Large errors in scene structures are apparent in the images marked red. For example, the



GRIFFITH, PRADALIER: REPROJECTION FLOW 9

Table 1: The average ratio of points within 15 pixels after three-cycle consistency. The
values are high given that the analysis involves a three-cycle and 704x480 resolution images.

Number of Weeks Between Surveys 4-6 9-11 14-16 19-21 24-26 29-31 34-36

SIFT Flow 0.27 0.23 0.24 0.23 0.21 0.21 0.21
Reprojection Flow 0.31 0.30 0.31 0.31 0.29 0.30 0.32

Table 2: The average ratio of points within 15 pixels after three-cycle consistency, with
added viewpoint variation.

Number of Weeks Between Surveys 4-6 9-11 14-16 19-21 24-26 29-31 34-36

SIFT Flow 0.19 0.15 0.16 0.17 0.14 0.15 0.16
Reprojection Flow 0.26 0.20 0.25 0.25 0.21 0.26 0.25

June images at section 375 show perceptual aliasing with reflections in the water, albeit
more so with SIFT Flow. Reprojection Flow lost the scene structure near the shoreline of
that image due to the error of the map points there. The more accurate map points at section
325, however, keep the scene structures in place during the alignment. Similarly, the other
images marked green better retain the foreground structure.

4.4 Consistency of Image Registration Across Seasons and Viewpoint
Because Reprojection Flow centers the hypothesis space around the correct alignment, it can
make image registration more robust to variation in viewpoint. To evaluate this, the same
test as in Section 4.3 was performed, except using images that are offset from I j. An offset
of -10 is used, which corresponds to a displacement of the scene in the image by roughly
25-50% of the image width. The result is shown in Table 2 (Figures 1 and 3 show examples
of manually added viewpoint variation). The improvement over SIFT Flow is retained.

5 Discussion
The positions of things in an environment provide a basis for image registration across sea-
sons. With Reprojection Flow, a localized observer knows what scene it is viewing. It also
knows how the scene corresponds to views of the same place it acquired in the past. Map
points reproject onto images to provide this appearance-invariant information. Constraints
help to maximize it.

Knowing the rough location of the correct alignment in the image is powerful, for ro-
bustness to variation in both appearance and viewpoint. The hypothesis space can be made
much tighter if it is centered around the correct alignment. This advantage means that in the
cases when few features match well, the best match is still often the correct one. SIFT Flow
uses a large hypothesis space to compensate for the fact that it is not centered at the correct
one. With the parameters we used, its hypothesis space is large enough to compensate for
correspondences up to 50% of the image width. It may have been made larger, but that would
also add many more candidate matches. This can lead to significant artifacts in the image
due to perceptual aliasing.

The two steps required to create a consistent map are the primary limitations of this work.
Map consistency highly depends on the accuracy of the initial image registrations. Also,
the optimization does not scale well; here the optimization was performed on a machine
with 192 GB of RAM. Both may be improved, however, by utilizing Reprojection Flow in
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Figure 5: Images from a September survey shown here aligned with images from January,
March, and June surveys using our method and SIFT Flow. Green and red flags indicate
alignment quality as manually labeled by a human. The foreground mostly aligns well in
images marked green whereas significant artifacts appear in images marked red. (Best viewed
in color.)

an incremental data association and optimization approach. Rather than perform one large
optimization, incremental optimization, using e.g. iSAM2 [9], may allow for optimizing one
survey at a time. As the map and the poses are incrementally made consistent, Reprojection
Flow may be applied to improve the set of initial data associations (analogous to [4]).
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