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1 Proof for Eq. 3 in the Paper

Lemma 1.1. Let vectors X,y,z € R¥T3, strictly positive reals a, b, and function

bz ax (a—Db)y
D(X’y’z’a’b)_a(a—i—b)_b(a+b)+ ab . (1)

IfM : R — R¥3 s a C? continuous function and t € R,
M'(t) = D(M(t —b),M(t),M(t +a),a,b) + O(a> 4+ b*) 2)

Proof. Since M is C3 continuous,

M(t+a) =M(t)+aM'(t)—|—%2M"(t)—|—(9(a3) 3)
M(t—b) :M(t)fbM’(t)jL%M”(t)+(9(b3). )

We eliminate M” (¢) by summing %(Eq. 3)-3(Eq. 4):

SM(I—Fa) M) = (g M)+ (b +aM (1) +5O(@) +aOF).  (5)
Since a >0 and b > 0,
M) = aj_b(gM(H—a) ~IM(-b)+ (5 - Z)M(t)) +O(@ +b2). ©)

]
We use this lemma with t =#;, a =t;1 — t;, b=1t; —t;_1, A = max;(t;+1 —1;), and obtain

M’ (t;) = D(M (ti-1), M (), M (ti 1), tiv1 — ti i —1i1) + O(A%), (7
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2 The Singularities of Euler Angles (Sec. 4.1 in the Paper)

The proof of Lemma 2.1 is more detailed than thatin [1]. Let R(a, B,7) = R.(7)Ry(B)R:()
where R(e), Ry(B) and R, (y) are the rotations around the vectors of the canonical basis of
R3 with respective angles o, B and 7. Let R be the jacobian of R at («, 8,7) with respect

to (o, B,7). We have OR = (3—5 g—lg g—I;) € RS,

Lemma 2.1. kerdR # 0 if and only if there is k € 7 such that B = n/2+km, i.e. if and only
if the coefficient on the bottom-left corner of R(¢et, 3,7) is 1 or —1.

Proof. We use shortened notations cq = cos @, s¢ = sin @, cg =cos B, sg = sin 3, Cy=cosy
and sy = siny. Thus

cy —sy O cg 0 sp 1 0 0
R((X,B,}/) - S'y C'y 0 0 1 0 0 Ca —So (8)

0 0 1 —Sp 0 cp 0 sq¢ cCq
cy —sy O g SpSa  SgCa

= sy ¢y O 0 Ca —Sq ©)]
0 0 1 =SB CgSa  CpCa
CyCB  CySBSa —SyCa CySBCa + SySa

= Sycg  SySgSatCyCa  SySgCa — CySa | - (10)
—SB CBSa CRCa

First we show that § = n/2 + kx implies kerdR # 0. Let € = 1 if k is even, otherwise
€= —1. We have sg = sin(en/2) = €, cg = cos(ex/2) =0, sin(ey) = €5y and cos(£7y) = ¢y.
Thus

0  &cySq—syca EcyCq+Sysq

R((LETE/Q, '}/) = 0 £S'J/Sa+c'y0a SS'yC(x_c'ySa (11)
—€ 0 0
0 esin(fa—ey) ecos(a—ey)
= 0 cos(a—ey) —sin(a—ey)]|. (12)
—€ 0 0

Thus 0 — R(a+ €0,em/2,y+ 6) is a constant function. We derivate it at § = 0 thanks to
the chain rule and obtain (g% g% %) (e 0 1)T =0 at point (¢, 3,7).

Second we show that 8 # 7/2 + km and <g—§ g—g g—l;) (a b c)T =0 imply a =
b = ¢ = 0. Using derivative of the first column of Eq. 10, we obtain

_Cysﬁ 7S7Cﬁ
b | —sysg | +c| cyep | =0andcg #0. (13)
—cp

Thus b =0 and ¢ = 0. Now we have ag—s = 0. Using derivative of the last row of Eq. 10 and
cp = 0, we obtain a = 0. O

Lemma 2.2. If A and B are two invertible 3 X 3 matrices, kerd R = ker d(ARB).
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Proof. Let x € kerdR, R;; be the coefficients of R, and dR;; is the gradient of R;; with
respect to parameters (o, 3,7). Thus dR;;.x = 0 and

(8(ARB),»j).x = (8(2AikRlelj)).x = ZAikBlj(8Rkl).x =0. (14)
kil il

We see that d(ARB).x =0, i.e. kerdR C kerd(ARB). Since A and B are invertible, we use
this inclusion (replace R by ARB, replace A by A~!, replace B by B~!) and obtain

kerd(ARB) C kerd(A~ ' (ARB)B™!) = kerdR. (15)

O
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