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Abstract

Multi-cameras built by fixing together several consumer cameras become popular
and are convenient for applications like 360 videos. However, their self-calibration is
not easy since they are composed of several unsynchronized and rolling shutter cameras.
This paper introduces a new bundle adjustment for these multi-cameras that estimates
not only the usual parameters (camera poses and 3D points) but also the synchronization
and the rolling shutter of the cameras. We experiment using videos taken by GoPro
cameras mounted on a helmet, moving along trajectories of several hundreds of meters
or kilometers, and compare our results to ground truth.

1 Introduction
Multi-cameras built by fixing together several consumer cameras become popular thanks
to their prices, high resolutions, their growing applications including 360 videos (e.g. in
YouTube) and generation of virtual reality content [1, 2]. However such a multi-camera
also has drawbacks. A first problem is the lack of accurate synchronization between the
cameras. In the usual cases (e.g. GoPro), the camera manufacturer provides a wifi-based
synchronization: the user starts all videos by a single click. However it is too inaccurate for
applications such as 360 video and 3D modeling. Secondly, a low price camera implies that
the camera is rolling shutter or RS. This means that two different lines of pixels of a frame
are acquired at different instants (in a global shutter or GS camera, all pixels of a frame have
the same time). Both inaccurate synchronization and RS complicate the self-calibration for
the same reason: they act as time varying relative pose between the cameras, i.e. the multi-
camera has a varying non-central calibration [5].

This paper introduces a new bundle adjustment (or BA) for these multi-cameras, that
simultaneously estimates not only the usual parameters (camera poses and 3D points) but
also the synchronization and the RS coefficient. We start from an initial calibration with
the simplest camera model (GS) and a frame-accurate synchronization (FA) provided by
previous self-calibration methods [10]. FA means that we skip the first frames in the videos
such that the sequels of the videos have the following property: the frames with the same
frame index are taken at the same time up to the inverse of fps (frames-per-second). Our BA
provides subframe-accurate synchronization (SFA), i.e. it estimates the residual time offsets
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between a reference camera and the others. It also estimate the RS coefficient, i.e. the time
delay between two adjacent lines of a frame.

2 Previous work
In contrast to our multi-camera BA, the previous ones estimate neither synchronization nor
RS. They [9, 10, 14] assume that the cameras are synchronized and GS, only [8] deals with
known RS but needs other sensors. Previous monocular BA estimates the RS assuming that
the 3D points are known in a calibration pattern [13] or enforce a known RS coefficient [3, 6].
In the context of visual SLAM [7], a GS BA is applied to a RS (monocular) camera thanks
to a RS compensation: this method corrects beforehand the RS effects on the feature tracks
by estimating instantaneous velocities of the camera.

Each RS BA has a model of the camera trajectory, which provides the camera pose at
each instant corresponding to each line of a frame, and which should have a moderated
number of parameters to be estimated. In [6], one pose is estimated at each frame by BA
and the poses between two consecutive frames are interpolated from the poses of these two
frames. An assumption on the inter-frame motion is required. The BA in [3] adds extra
parameters to avoid this assumption: it not only optimizes a pose but also rotational and
translation speeds at every keyframe (not all frames). The translation speed is optional if
its RS effect is negligible compared to that of rotation speed. In [13], a continuous-time
trajectory model is used using B-splines and the BA optimizes the knots of the splines. The
method chooses the number of knots and initializes their distribution along the trajectory
sequence. In [8], the relative pose between an inter-frame pose and an optimized frame
pose is provided by IMU at high frequency. The visual only RS approaches [3, 6, 7, 13]
are experimented on few meters long camera trajectories. Ours is experimented on longer
trajectories (hundreds of meters, kilometers) since it only estimates poses at keyframes.

In the context of a general multi-sensor, [4] simultaneously estimates the temporal and
spatial registrations between sensors. In the experiments, the multi-sensor is composed of
a camera and IMU. The best accuracy is obtained thanks to the use of all measurements at
once, a continuous-time representation (a B-spline for IMU poses) and maximum likelihood
estimation of the parameters (time offset, transformation between IMU and camera, IMU
poses, and others). In [11], a camera-inertial multi-sensor is self-calibrated (synchronization,
spatial registration, intrinsic parameters) by a sliding window visual odometry. Thanks to an
adequate continuous-time motion parametrization, it also deals with RS cameras and has a
better parametrization of the rotations. Indeed, it avoids the singularities of the global and
minimal parametrization of rotations (e.g. in [4]), but assumes that the time between consec-
utive keyframes is uniform. Our work introduces a global minimal rotation parametrization
and deals with non-uniform distribution of keyframes provided by standard Structure-from-
Motion (SfM). This is done thanks to an assumption on the multi-camera motion, which is
tenable for helmet-held cameras in most cases.

3 Proposed Method

3.1 Initialization
First we assume that the monocular videos are approximately synchronized by removing
few frames at their beginning (FA synchronization), i.e. the videos are synchronized up to
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the inverse of fps. The fps is assumed to be the same for all videos. Then we define the i-th
frame of the multi-camera by a concatenation of sub-images, every of them is the i-th frame
of a monocular camera. From now on, we use word frame for “frame of the multi-camera”
and the video is the sequence defined by all frames. Last we use standard SfM based on
keyframe subsampling of the video and local BA [12], followed by global BA. The camera
is self-calibrated assuming GS [10]. We remind that the keyframes are the only frames whose
poses are refined by the BAs (this is useful for both time computation and accuracy).

3.2 Parametrization of the Multi-Camera Trajectory
LetR be a C1 continuous function that maps Ω⊆Rk to the set SO(3) of rotations of R3. We
assume that there is a C3 continuous function M : [0,1]⊂ R→ R3×Ω that parametrizes the
motion of the multi-camera. More precisely, M(t)T =

(
TM(t)T EM(t)T ) where TM(t) ∈R3

is the translation and R(EM(t)) ∈ SO(3) is the rotation. The columns of matrix R(EM(t))
and TM(t) are the vectors of the multi-camera coordinate system at time t expressed in world
coordinates. The choice ofR is detailed in Sec. 4 for the paper clarity.

Thanks to these notations and assumptions, we will approximate M at every time t ∈ [0,1]
by using values of M at few times t0, t1, · · · tn where t0 = 0, ti < ti+1 and tn = 1. The M(ti) are
the only parameters of the multi-camera trajectory estimated by our BA. Sec. 3.3 defines ti
and Sec. 3.4 describes our approximation of M(t) by using the M(ti).

3.3 Time, Rolling-Shutter and Synchronization Parameters
The i-th keyframe is composed of sub-images taken by the monocular cameras. Every line
of every sub-image is taken at its own time, which is described now. The 0-th line of the 0-th
sub-image in the i-th keyframe is taken at time ti, assuming that the time exposure of a line
is instantaneous [5]. Thus ti+1− ti is a multiple of the inverse of fps. Since the cameras are
RS, line delay τ is such that the y-th line of the 0-th sub-image in the i-th keyframe is taken
at time ti + yτ . Let ∆ j ∈ R be the time offset between the j-th camera and the 0-th camera:
the 0-th line of the j-th sub-image in the i-th keyframe is taken at time ti +∆ j. Since we
assume that all cameras have the same fps and same (and constant) τ , the y-th line of the j-th
sub-image in the i-th keyframe is taken at time ti +∆ j + yτ .

3.4 Approximations for the Multi-Camera Trajectory
First we have Taylor’s expansion

M(t) = M(ti)+(t− ti)M′(ti)+O(|t− ti|2). (1)

Second we provide a relation between derivative M′(ti) and all M(ti). Let D be function

D(x,y,z,a,b) =
bz

a(a+b)
− ax

b(a+b)
+

(a−b)y
ab

,x,y,z ∈ Rk+3,a > 0,b > 0. (2)

Let ∆ = maxi(ti+1− ti) and shortened notation mi = M(ti). Thanks to a linear combination
of Taylor expansions of M at ti (more details in the supplementary material),

M′(ti) = D(mi−1,mi,mi+1, ti+1− ti, ti− ti−1)+O(∆2). (3)
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Third we approximate M(t) from the mi by neglecting all remainders expressed by “O”
above. We compute M(t) for the y-th line of the j-th camera/sub-image in the i-th keyframe
using t = ti +∆ j + yτ (Sec. 3.3). If 0 < i < n,

M(t) = mi +(t− ti)D(mi−1,mi,mi+1, ti+1− ti, ti− ti−1). (4)

If i = 0 (similarly if i = n), we use M(t) = m0 +(t− t0)(m1−m0)/(t1− t0).
Last we provide conditions that reduce the remainders of our Taylor developments, i.e.

O(|t − ti|2) and O(∆2). If the density of keyframes in the video increases, ∆ decreases.
Furthermore, |yτ| ≤ 1/ f ps and the FA synchronization provides |∆ j| ≤ 1/ f ps. Thus |t−ti|=
|∆ j + yτ| decreases if the fps increases. If M′′ = 0, both remainders are exactly 0.

3.5 Reprojection Error of the Multi-Camera

Since our BA minimizes the sum of squared modulus of reprojection error for every inlier,
this section describes the computation of a reprojection error for 3D point x ∈ R3 (in world
coordinates) and its inlier observation p̃ ∈ R2 in the j-th sub-image of the i-th keyframe.

First we introduce notations. Let p ∈ R2 be the projection of x in the j-th sub-image
of the i-th keyframe. The reprojection error is p− p̃. Let (R j, t j) be the pose of the j-th
camera in the multi-camera frame. Let K j : R3 \{0} → R2 be the projection function of the
j-th camera. We assume that K j,R j, t j are constant. The acquisition times of p = (x,y) and
p̃ = (x̃, ỹ) are tp = ti +∆ j + yτ and tp̃ = ti +∆ j + ỹτ .

Second we detail the relation between p and x. Both EM(tp) and TM(tp), i.e. M(tp), are
defined by Eq. 4 using index i of the keyframe and t = tp. The coordinates of x in the multi-
camera coordinate system is xM =R(EM(tp))>(x−TM(tp)). The coordinates of x in the j-th
camera coordinate system is x j = R>j (xM− t j). We also have p = K j(x j).

Third we estimate p. We see that p needs the computation of xM , which in turn needs the
computation of (the y coordinate of) p. This problem is solved thanks to an approximation
in [8]: tp is replaced by tp̃ in the expression of xM , i.e. we assume that the multi-camera pose
is the same at times tp̃ and tp. We think that this is acceptable since |tp̃− tp| ≤ τ||p− p̃||2 and
the magnitude order of τ is 10−5 s/pixel and p̃ is an inlier (i.e. ||p− p̃||2 ≤ 4 pixels).

3.6 Summary

First keyframes are selected and standard BA initializes the 3D points and the keyframe poses
assuming GS cameras and FA synchronization (Sec. 3.1). Then the mi are computed from the
poses. We also have τ = 0 (GS assumption) and ∆ j = 0 (FA assumption). Last we apply our
BA which refines not only the mi and the 3D points, but also line delay τ (RS assumption)
and/or the time offsets ∆ j (SFA assumption). It is based on Levenberg-Marquardt method.

4 Parametrization of Rotations

According to Sec. 3.2, R is a C1 continuous function such that R(Ω) = SO(3) and Ω ⊆
Rk. Following [13], we prefer a minimal (non-redundant) parametrization R to avoid any
constraints on the R entry and limit the number of estimated parameters. Sec. 4.1 is a
reminder of these parametrizations and Sec. 4.2 details our choice.
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4.1 Minimal Parametrizations of SO(3) for BA
During BA, the set of all rotations in a neighborhood of a current estimate of a rotation should
be reachable by parametrizationR [16]. Since SO(3) is a 3D manifold, such a neighborhood
is 3D and jacobian ∂R of R should have rank 3. Thus a minimal parametrization R meets
k = 3, i.e. Ω⊆ R3. Unfortunately, all 3D parametrizations of SO(3) have singularities [15].

We detail the case of Euler parametrization E(α,β ,γ) = Rz(γ)Ry(β )Rx(α) where Rx(α),
Ry(β ) and Rz(γ) are the rotations about axes x-y-z with angles α-β -γ . The singularities of E
are the points (α,β ,γ) ∈ R3 where ∂E is rank deficient, i.e. planes β = π/2+ pπ such that
p ∈ Z (a detailed proof is in the supplementary material). Parametrization E can be used in
BA if β is as far as possible to π/2+πZ, e.g. local Euler angles [16] such that |β | � 1.

The angle-axis parametrization used in [13] has a bounded angle domain due to singular-
ities at angles 2πZ∗. This restricts the continuous camera motion: rotations around a fixed
axis must have angle range in ]−2π,2π[, e.g. no more than two full turns around a building.

4.2 Keep Away from the Singularities of Euler Parametrization
Here we defineR using E and keep away from all singularities. According to Sec. 3.2,R is
a global parametrization for all rotations of the continuous camera motion M(t). Note that
there is a single R for all times, in contrast to the local methods in [15, 16] which switch R
over time. Furthermore, R has singularities since it is minimal (Sec. 4.1). Thus we do an
assumption on the camera motion to keep away from the singularities.

Now we remind that the multi-camera is helmet-held. All yaw motions of the head are
possible since the user can move in all horizontal directions. We assume that the pitch and
roll of the head are small, i.e. the viewing direction of the user is roughly pointing toward the
horizon without odd roll rotations. We believe that this assumption is reasonable for an user
exploring the environment without a special objective like grasping at objects on the ground.

Let R0
i be the rotation of the initial mi computed by standard BA. Thus all (R0

i )
TR0

j are
roughly rotations sharing a same axis v∈R3. Let R(v,θ) be the rotation with axis v and angle
θ . There are rotation R and angles θi such that R0

i ≈ RR(v,θi). Let k =
(
0 0 1

)T . Let
rotations A and B be such that ∀i,AR0

i B≈ R(k,γi). Angles (αi,βi,γi) meet E(αi,βi,γi) = AR0
i B

and 2π multiples can be added to them. We would like that αi,βi,γi are coordinates of M(ti).
We choose βi that has the smallest |βi|. Since E(αi,βi,γi)≈ R(k,γi), |βi| is small enough to
keep away from E singularities. We also remind that M is continuous and |ti− ti+1| is small
thanks to the keyframe sampling. Thus the γi series is chosen such that |γi− γi−1| is as small
as possible (|βi−βi−1| is also small, and we do similarly for αi). Last we defineR(α,β ,γ) =
A−1E(α,β ,γ)B−1 to obtain R(αi,βi,γi) = R0

i . Since R has the same singularities than E
(supplementary material) and β ≈ βi during our BA, (α,β ,γ) is far from theR singularities.

4.3 Technical Details: Estimate A and B

For all i and j, (R0
i )

TR0
j ≈ R(v,θ j−θi). Let vi, j be the axis of (R0

i )
TR0

j . First we search v as
the most colinear vector to all vi, j, i.e. v maximizes ∑i, j(vT

i, jv)2. Thus v is the eigen vector
of the largest eigen value of the symmetric matrix ∑i, j vi, jvT

i, j. Second we estimate rotation
R̃ such that R̃R0

i ≈ R(v,θ ′i ). Since R0
i ≈ RR(v,θi), R0

i v≈ Rv. Let ṽ = ∑i R
0
i v/||∑i R

0
i v||. Thus

ṽ≈ Rv≈ R0
i v. Let R̃ be a rotation such that R̃ṽ = v. Since R̃R0

i v≈ R̃ṽ = v, R̃R0
i ≈ R(v,θ ′i ). Let

R′ be a rotation such that R′v = k. We obtain R′R̃R0
i R
′T ≈ R(k,γi). Thus A= R′R̃ and B= R′T .
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Figure 1: Two multi-cameras formed by four GoPro Hero3 cameras and images taken at a
viewpoint for every dataset. Top and middle: the cameras are enclosed in a cardboard (for
small baseline). Bottom: the housings provided with the cameras are used.

5 Experiments

5.1 Datasets and Notations

The multi-camera is defined by four GoPro Hero3 cameras (Fig. 1) that have the same setting
at a time, except the camera gain that evolves independently for every camera. We assume
that time offsets and calibrations do not change in a video. Tab. 1 summarizes our datasets:
three real (multi-camera) videos under various conditions (bike riding in a city, walking in
a town [10], paragliding flying at very low height above a hill) and one synthetic video. In
all cases, a 360◦ field of view around the head is obtained. The ground truth of line delay τ
is available thanks to a strobe. Furthermore, we use global shutter and central approxima-
tions [10] to obtain the initial self-calibration (FA synchronization, intrinsic parameters, 3D
points, multi-camera poses and relative poses) and a concurrent SFA synchronization based
on instantaneous angular velocity (we call it Sync).

BikeCity2 is generated by ray-tracing of a synthetic urban scene having real textures and
by moving the camera along a trajectory that mimics that of BikeCity1 (the “pose noise”, i.e.
relative poses between consecutive frames, are similar in both videos). We obtain a video
for each camera by compressing the output images using ffmpeg and options “-c:v libx264
-preset slow -crf 18”. BikeCity2 has ground truth: f ∆0 = 0, f ∆1 = 0.25, f ∆2 = 0.5, and
f ∆3 = 0.75 where f = f ps (if f ∆ j = 1, ∆ j is the time between two consecutive frames).

We note that the setting of the cameras of FlyHill is different to those of the other videos
(frequency, resolution, orientations, baseline). The baseline in the others is as small as pos-
sible for the central approximation. Furthermore, FlyHill is the most difficult case due to
rolling shutter. Indeed, its fps is twice smaller and it includes faster head turns.

We use notations: C (central approximation) estimates R j and fixes t j = 0, NC (non-
central) estimates both R j and t j, RS estimates τ , SFA estimates ∆ j, GS means τ = 0 and FA
means ∆ j = 0. For example, a GS+SFA+NC bundle adjustment fixes τ = 0 and estimates
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Name f ps r (mr) b (cm) τ (µs) l (m) f r k f r #3D ||βi||∞
BikeCity1 100 1.56 7.5 9.12 2500 50.4k 1701 354k 0.184
WalkTown 100 1.56 7.5 9.12 900 70.3k 1329 400k 0.176

FlyHill 48 1.06 18 11.3 1250 8.6k 593 565k 0.434
BikeCity2 100 1.56 7.5 9.12 615 12.5k 372 110k 0.049

Table 1: Our videos: angular resolution r (milliradians), diameter b of multi-camera centers,
line delay τ (ground truth), trajectory length l, numbers of frames f r and keyframes k f r and
3D points #3D, maximum of angles |βi| (radians) of our parametrization in Sec. 4.2.

simultaneously all ∆ j, R j, t j, the keyframe poses mi and the 3D points. The threshold for
inlier selections is set to 4 pixels in all videos.

5.2 One New Assumption at Once
There are several new assumptions NC, SFA and RS. Thus we first examine what they
provide separately: we experiment GS+NC+FA, GS+C+SFA and RS+C+FA bundle adjust-
ments. The number of independent and optimized parameters of these BAs are x+9, x+3
and x+1 (respectively), where x is the number of parameters of the initial GS+C+FA BA.

In Tab. 2, the inlier set is fixed in every video to compare the improvements in term
of RMS of reprojection errors (in pixels). The RMS decreases are small (less than 1.7%),
except for FlyHill: GS+C+SFA has 3.9% and RS+C+FA has 3.2%. This confirms that the
RS and SFA effects are non negligible for FlyHill due to the fast image motion (it is faster
than in other videos). We also see that the NC assumption has the lowest impact on the
RMS in spite of its larger number of parameters. At this point, the relative error of τ is
quite large for FlyHill (58%), it also important for the others (3.8%-13.3%). The error of
f ∆ j (BikeCity2), or the difference between our f ∆ j and those of Sync (others), can reach
0.14 in BikeCity2 or 0.24 in WalkTown. Such discrepancies look large since we expect that
| f ∆ j| ∈ [0,1], but the resulting discrepancies for the 3D locations of the multi-camera are
small. For example, the mean distance between multi-camera poses for consecutive images
of WalkTown is 900/70300m, thus f ∆ j = 0.24 implies a 3D discrepancy of only 2.9mm.

We continue these experiments by alternating inlier updates and BAs in Tab. 3. Then τ is
improved: the relative error is less than 7.9% except for FlyHill (42%). The f ∆ j estimation
is similar to that in Tab. 2 (the RMS of differences of f ∆ j is less than 0.05). The inlier sets
increases slightly: 0.6-0.9% for RS+C+FA and GS+C+SFA of FlyHill and less than 0.1%
elsewhere; their main computations have been done before by initialization BA (GS+C+FA).

5.3 Several New Assumptions at Once
Now we try RS+SFA simultaneously and study differences between these results and the pre-
vious ones in Tab. 3 and Sync. More precisely, we compute RS+NC+SFA and RS+C+SFA
like this. Get the GS+NC+FA result in Tab. 3, apply RS+NC+FA and then RS+NC+SFA. Get
the GS+C+SFA result in Tab. 3, apply RS+C+SFA (all BAs include inlier updates). Fig. 2
shows views of the RS+NC+SFA results.

We first focus on BikeCity2 (Tab. 4). The accuracy of ∆ j is better than that in Tab. 3 and
Sync (the RMS of f ∆ j difference between Tab. 4 and ground truth is 0.027 for RS+NC+SFA
or 0.019 for RS+C+SFA). However the relative error of τ is worse: 6.8%-8.5% (0.31% in
Tab. 3). Thus the simultaneous use of RS+SFA improves ∆ j but provides a bias for τ .
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Method i-RMS f-RMS f ∆1 f ∆2 f ∆3 10000 f τ
BikeCity1 Sync or G.T. -0.042 -0.163 0.306 9.120

GS+NC+FA 0.9550 0.9534
GS+C+SFA 0.9550 0.9520 -0.122 -0.147 0.314
RS+C+FA 0.9550 0.9484 7.898

WalkTown Sync or G.T. 0.517 0.474 0.443 9.120
GS+NC+FA 0.9452 0.9406
GS+C+SFA 0.9452 0.9391 0.715 0.714 0.510
RS+C+FA 0.9452 0.9391 8.714

FlyHill Sync or G.T. 0.207 -5e-4 -0.358 5.424
GS+NC+FA 1.3643 1.3537
GS+C+SFA 1.3643 1.3107 0.058 -0.024 -0.231
RS+C+FA 1.3643 1.3207 2.270

BikeCity2 G.T. 0.25 0.5 0.75 9.120
GS+NC+FA 0.8124 0.8121
GS+C+SFA 0.8124 0.7985 0.388 0.476 0.788
RS+C+FA 0.8124 0.8009 8.777

Table 2: BA results for a fixed set of inliers for every video. i-RMS and f-RMS are RMS
before and after BA.

Method #3D f ∆1 f ∆2 f ∆3 10000 f τ
BikeCity1 GS+NC+FA +87

GS+C+SFA +130 -0.137 -0.156 0.336
RS+C+FA +323 8.401 (7.9%)

WalkTown GS+NC+FA +165
GS+C+SFA +235 0.750 0.746 0.535
RS+C+FA +242 9.020 (1.1%)

FlyHill GS+NC+FA +448
GS+C+SFA +5231 0.089 -0.028 -0.312
RS+C+FA +3627 3.153 (42%)

BikeCity2 GS+NC+FA +9
GS+C+SFA +38 0.403 0.495 0.836
RS+C+FA +21 9.092 (0.31%)

Table 3: Results of our BAs with increasing set of inliers for every video (#3D is the number
of 3D inlier points added to those in Tab 2, i.e. Tab 1). Percentages are relative errors.

For FlyHill, the relative error of τ is less that 5.1% and is quite better than that in Tab. 3;
offsets ∆ j of RS+NC+SFA and RS+C+SFA are similar. Once more, the largest increase of
inlier set (3.5%) is observed in this video. The relative error of τ is better for BikeCity1 (less
than 5.3%), but it is worse for WalkTown (less than 9.8%). For FlyHill and BikeCity1-2, the
RMS of f ∆ j diff. between Tab. 4 and Sync (range from 0.1 to 0.2) is greater than the RMS
of f ∆ j diff. between Tab. 3 and Sync (range from 0.05 to 0.08). Both Sync and GS+C+SFA
(Tab. 3) use the same GS+C assumption and we believe that they provide similar ∆ j for this
reason (this does not mean that the ∆ j in Tab. 3 are better than the ∆ j in Tab. 4).
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Method #3D f ∆1 f ∆2 f ∆3 10000 f τ
BikeCity1 RS+NC+SFA +492 -0.357 -0.155 0.151 8.922 (2.1%)

RS+C+SFA +379 -0.355 -0.148 0.156 8.636 (5.3%)
WalkTown RS+NC+SFA +489 0.543 0.807 0.339 10.016 (9.8%)

RS+C+SFA +343 0.567 0.795 0.343 9.480 (3.5%)
FlyHill RS+NC+SFA +19659 0.286 0.200 -0.326 5.700 (5.1%)

RS+C+SFA +19608 0.287 0.200 -0.330 5.595 (3.1%)
BikeCity2 RS+NC+SFA +53 0.256 0.542 0.772 8.497 (6.8%)

RS+C+SFA +50 0.251 0.530 0.762 8.342 (8.5%)
Sync 0.404 0.398 0.829

Table 4: Results of our BAs with increasing set of inliers for every video.

Figure 2: From left to right: reconstructions of BikeCity1, WalkTown, FlyHill and BikeCity2
by RS+NC+SFA without loop closure. The FlyHill trajectory has a lot of sharp S turns.

5.4 Parametrization of the Multi-Camera Orientations

Here we examine the Euler angles involved in our rotation parametrization in Sec. 4.2. Fig. 3
illustrates function E that maps keyframe number i to (αi,βi,γi) for BikeCity1. Function E
looks continuous (zoom in to see the blue crosses); the largest value of |γi− γi−1| is equal
to 0.61 rad. Such a result is expected since EM is assumed to be C3 continuous and the
keyframe sampling ti is dense enough to obtain a successful SfM result. Here ti+1− ti ranges
from 0.1s to 2.3s. Furthermore, |βi| is as small as possible to keep away from the singularities
β ∈ π/2+πZ. According to Tab. 1, all |βi| are less than 0.44 rad. The |βi| RMS is about
0.3-0.6 times the |βi| maximum for every video.

Last we detail consequences of a naive use of Euler angles ignoring singularities (using
notations in Sec. 4). Assume that the initial multi-camera poses meet R0

i ≈ Rz(γi)Ry(π/2).
This is possible because of a “bad” choice of coordinate systems: if the world coordinate
system is rotated by A and the multi-camera coordinate system is rotated by BRy(π/2), R0

i
is replaced by AR0

i BRy(π/2) ≈ Rz(γi)Ry(π/2). Now we naively set R = E and redo the
experiments of BikeCity1. Then βi ≈ π/2 (this is very close to a singularity). Angles αi and
γi are quite more perturbed although they are chosen such that function E is as continuous as
possible (maxi |γi− γi−1| = 3.11 and maxi |αi−αi−1| = 3.13). The new values of 10000 f τ
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Figure 3: Euler angles for BikeCity1.

are 7.338, 7.957, 7.962 and 7.858 in respective conditions of Tabs. 2, 3, 4. Thus the relative
errors of τ (%) increase by 6.1, 4.8, 10 and 8.5. The inlier sets are similar (slightly worse).

6 Conclusion
We present the first bundle adjustment for multi-cameras that estimate not only rolling shut-
ter (line delay) but also synchronization (time offsets), in addition to the usual 3D parameters
(points, camera and multi-camera poses). In contrast to the previous Structure-from-Motion
methods involving rolling shutter, only keyframes are involved and we deal with larger tra-
jectories (600m-2.5km). The multi-camera motion is modeled at all times thanks to Taylor
approximations and a careful use of Euler angles avoiding singularities. We experiment in
cases that we believe useful: several and identical consumer cameras mounted on a helmet.

At first glance, our approximations seem hazardous if the user does a motion that is not
consistent with the neighboring keyframes. Anyway, the majority of keyframes provides
accurate enough approximation to obtain the following results in our non trivial datasets.
The relative error of the estimated line delay is less than 7.9% except in the most difficult
case with faster head motions; the simultaneous estimation of line delay and time offsets can
provide bias but it also provides the best result (5.1%) for the most difficult case. The best
(subframe-accurate) time offsets are given by the simultaneous estimation.

Several extensions are possible: adding estimated parameters only for keyframes where
our model of multi-camera motion is not accurate, adding parameters by taking care of over-
fitting (e.g. intrinsic parameters, one line delay and frame rate per camera), trying alternative
camera models and rotation parametrizations, improving applications like 3D modeling and
360 video.
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