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Abstract

We address the problem of estimating camera pose relative to a known scene, given
a single RGB image. We extend recent advances in scene coordinate regression forests
for camera relocalization in RGB-D images to use RGB features, enabling camera relo-
calization from a single RGB image. Furthermore, we integrate random RGB features
and sparse feature matching in an efficient and accurate way, broadening the method for
fast sports camera calibration in highly dynamic scenes. We evaluate our method on both
static, small scale and dynamic, large scale datasets with challenging camera poses. The
proposed method is compared with several strong baselines. Experiment results demon-
strate the efficacy of our approach, showing superior or on-par performance with the state
of the art.

1 Introduction
Camera pose estimation plays a vital role in many computer vision, robotics, and augmented
reality (AR) applications. Recent consumer robotics products, such as iRobot Roomba 980
and Dyson 360 eyes, have been equipped with the visual SLAM (simultaneous localization
and mapping) technology and know where they have visited before. In AR products such as
HoloLens, Project Tango and Oculus Rift, accurate camera poses are required to correctly
overlay virtual objects onto the real world. Our work is mainly inspired by recent advances
in scene coordinate regression forests (SCRF) based methods [19, 33, 36] for camera relocal-
ization. Our method also benefits from the privilege learning [9, 32, 38] in which additional
information only exists at the training stage. The SCRF-based methods use an efficient re-
gression forest to guide the camera pose optimization using RGB-D images, achieving high
accuracy. Our method learns from RGB-D images during training but does not require depth
images at test time, enabling it to be more accessible for end users.
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Figure 1: Camera pose estimation pipeline. During training, the scene information is
encoded in a random forest. At test time, an initial camera pose is estimated using the
predictions from the random forest with real-time response. Then, the initial camera pose
is used to query a nearest neighbor (NN) image from keyframes. Finally, the camera pose
is refined by sparse feature matching between the test image and the NN image. In our
method, the labels can be any information (e.g. scene coordinate positions or pan-tilt-zoom
configuration in PTZ camera) associated with pixel locations.

Fig.1 illustrates our pipeline. A regression forest is trained using RGB images and pixel-
wise labels. At test time, an initial camera pose is estimated using predicted labels from the
random forest. The accuracy of the camera pose is refined by sparse feature matching.

The main contributions of this work are:

• Extend the SCRF based methods to use RGB features (without depth), and test with
only a single RGB image.

• Integrate random features and sparse features, ensuring both efficiency and accuracy.
• Broaden random feature methods for fast sports camera pose estimation in large scale

and highly dynamic scenarios.

2 Related Work
Camera pose estimation with respect to known scenes has been widely studied in large scale
global localization [21, 29, 35], recovery from tracking failure [18, 22], and loop closure
detection in visual SLAM [11, 28, 31]. Feature-based and keyframe-based approaches are
two general categories for camera pose estimation, and other successful variants exist [20,
21, 34].

Feature-based methods usually match the descriptors extracted from the incoming frame
and the descriptors in the database [29, 31]. These methods first use image patch descriptors
(e.g., SIFT [25] and SURF [2]) to obtain 2D-3D correspondences. Then the perspective-
three-point [16] method and RANSAC [13] are employed to determine camera pose. How-
ever, these methods require a large database of descriptors and efficient retrieval methods.

One important extension of traditional feature-based methods is SCRF based methods
[19, 33, 36] which use random features in regression forests. In SCRF based methods, ev-
ery pixel can directly provide a 2D-3D correspondence to the scene, replacing the traditional
pipeline of feature detection, description and matching. However, these methods [19, 33, 36]
need RGB-D images for both training and test, constraining their applications. Contempora-
neous work [3] and [37] have extended the SCRF method to RGB camera relocalization.
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Keyframe-based methods [12, 17, 22] hypothesize an approximate camera pose by com-
puting whole-image similarity between a query image and keyframes. For example, ran-
domized ferns encode an RGB-D image as a string of binary codes. They have been used
to recover from tracking failure [18] and detect loop closure in SLAM [40]. However, these
keyframe-based methods provide inaccurate matches when the query frame is significantly
different from the stored keyframes.

The PoseNet [20, 21] based methods only use RGB images and achieve real-time re-
sponse. However, they sacrifice accuracy compared with the SCRF method in indoor scenes
as PoseNet models the camera pose estimation as a regression problem without post-processing.
Rubio et al. [30] proposed an efficient hybrid method based on deep neural networks and 2D-
3D feature matching in constrained viewpoints.

Our work aims to take advantage of the random features [33] and sparse features [27].
Compared with the sparse feature-based methods [15, 28, 31], our method is faster as we em-
ploy the random features by regression forests. Instead of searching in a high-dimensional
image descriptor space, we search in the low dimension camera pose space. Moreover, our
initial camera poses are accurate enough for some applications as will be shown in experi-
ments in Sec. 4.

3 Method
In the initial camera pose estimation, we model the problem as a structural regression prob-
lem:

ŷp = f (I,p|θ) (1)

where I is an RGB image, p is a 2D pixel location and θ is model parameters. In the
training, {p,mp} are paired training data. The label mp can be any information associated
with that pixel. For example, it is the world coordinate in camera relocalization, and the PTZ
configuration in sports camera pose estimation. At test time, ŷp is the prediction associated
with pixel p.

We choose randomized regression forests [10] to implement the regression function as
it naturally handles structure regression, while being fast and remaining reasonably easy to
train.

3.1 The random RGB features

We use features based on pairwise pixel comparison as in [23, 33]:

fφ (p) = I(p,c1)−I(p+δ ,c2) (2)

where δ is a 2D offset and I(p,c) indicates an RGB pixel lookup in channel c. The φ contains
feature response parameters {δ ,c1,c2}. A significant difference with the depth-adaptive
feature used by Shotton et al. [33] is that our feature does not require depth information. It
makes our method more flexible and allows for the application to large scale scenes.

3.2 Training a random regression forest

A regression forest is an ensemble of T independently trained decision trees. Each decision
tree is a tree-structured regressor consisting of decision (or split) nodes and prediction (or
leaf) nodes. We grow the regression forest using greedy forest training [10].
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Weak learner model Each decision node i represents a ‘weak learner’ parameterized by
θi = {φi,τi}. We pick the parameter θi from a set of randomly sampled candidates Θi.
Samples are evaluated on weak learners and passed from the root node to the leaf nodes as
follows:

h(p;θi) =

{
0, if fφi(p)≥ τi, go to the left subset SL

i .

1, if fφi(p)< τi, go to the right subset SR
i .

(3)

Here, τi is a threshold on random feature fφi(p).
The training is to optimize θi for each decision node:

θ ∗i = arg max
θi∈Θi

Ii(Si,θi) (4)

Ii = E(Si)− ∑
j∈{L,R}

|S j
i (θi)|
|Si|

E(S j
i (θi)) (5)

where E(Si) is the entropy of the labels in Si, and subset S j
i is conditioned on the split

parameter θi.

Leaf prediction Training terminates when a node reaches a maximum depth D or contains
too few examples. In tree t, one leaf node contains a set of samples whose distribution is
described by the leaf model parameter θ f . During the testing, the leaf outputs an estimated
vector:

v∗t = argmax
v

p(v|θ f ) (6)

with
p(v|θ f ) = N(v; µ,Σ) (7)

where µ,Σ are the mean and covariance of a multi-variate Gaussian distribution. The more
sophisticated Gaussian Mixture Model can better describe the observed multi-modal distri-
bution in the leaf node [36]. To achieve higher efficiency, we keep the leaf node as simple as
possible. Besides the pixel location in 3D world coordinate, our method also stores the color
distribution of samples in the leaf node to reduce color ambiguities.

Forest ensemble A forest is an ensemble of independently trained decision trees. Because
our method stores RGB color distribution in leaf nodes, we use the prediction that has the
most similar color distribution with the test pixel as the final prediction.

3.3 Pose refinement
In order to extend the random feature prediction from small scale to large scale, we drop the
depth information as it is not available for large scale from current consumer depth cameras
(e.g. Kinect maximum depth range 6m [14]). The downside of the RGB random feature
is that it is not naturally scale-invariant. A naive way to solve this problem is to train the
random forest using image pyramids. However, we found that the pyramid method is too
time-consuming and does not significantly improve the accuracy.

Based on this observation, we design a hybrid pipeline. First, we use the faster random
features to get an initial camera pose P0. Then, we employ accurate SIFT features [25] to
refine the initial camera pose. In the second step, the sparse feature matching based method
requires an image that shares the similar camera parameters with the test image. We search
for the nearest neighbor (NN) image whose camera is closest to the location of P0 while



: EXPLOITING RANDOM RGB AND SPARSE FEATURES FOR CAMERA POSE ESTIMATION5

Algorithm 1 Camera pose estimation from a single RGB image
Input: A set SI = {I1,I2, · · ·In} of images with pixel-wise labels
Input: An RGB image I
Output: The camera pose P of image I

1: Si = a set of randomly sampled pixel-wise training samples;
2: train a regression forest using Si; // Sec. 3.1 3.2
3: P0 = initial camera pose from the regression forest predictions;
4: search nearest neighbor image Inn in SI using P0;
5: match I and Inn to obtain 2D-3D correspondences;
6: estimate P using the 2D-3D correspondences and solvePnPRansac; // Sec. 3.3
7: return P

having an orientation difference no greater than a predefined threshold τ0 (1/4 of the field of
view).

The dimension of the camera pose space (≤ 6) is much smaller than the image descriptor
space (up to several hundreds [7]). Therefore, our method is much more efficient than the
place recognition methods using bag of words [15, 28]. Once the NN image is found, we
refine the camera pose by minimizing the reprojection error:

P∗ = argmin
P

∑
k

d(xk,PXk)
2 (8)

where P is the camera pose, x are the feature locations in the image, X are the correspon-
dent 3D world coordinates in the NN image. Because correspondences contain outliers, we
optimize Eq. 8 using EPnP [24] and RANSAC[13].

Algorithm 1 briefly shows our method step by step. Sports camera calibration shares the
same process but the formulation is slightly different from the general camera relocalization.
We put the detailed method of sports camera calibration in Sec 4.2 where more context
information is available.

4 Evaluations
4.1 Camera relocalization from a single RGB image

Dataset We use the 7 Scenes dataset of [33] to evaluate our method. The dataset con-
sists of 7 scenes which were recorded with a Kinect RGB-D camera at 640× 480 resolu-
tion. Each scene includes several camera sequences that contain RGB-D frames together
with corresponding ground-truth camera poses. The dataset exhibits shape/color ambigui-
ties, specularities and motion blur, which expose great challenges for our RGB-only random
features.

Baselines and error metric We use three strong methods as our baselines: SCRF [33],
PoseNet [21] and Bayesian PoseNet [20]. SCRF employs a scene coordinate regression
forest to guide camera pose optimization using RANSAC with RGB-D images. PoseNet
trains a ConvNet as a pose regressor to estimate the 6-DOF pose from a single RGB image.
Bayesian PoseNet improved the accuracy of PoseNet through an uncertainty framework by
averaging Monte Carlo dropout samples. We use the same median translational error and
rotational error as in [20, 21] for fair comparison.
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Scene Space SCRF PoseNet Bayesian Ours
Training RGB-D RGB RGB RGB-D
Test RGB-D RGB RGB RGB
Chess 3x2x1m 0.03m, 0.66◦ 0.32m, 8.12◦ 0.37m, 7.24◦ 0.12m, 3.92◦

Fire 2.5x1x1m 0.05m, 1.50◦ 0.47m, 14.4◦ 0.43m, 13.7◦ 0.14m, 4.64◦

Heads 2x0.5x1m 0.06m, 5.50◦ 0.29m, 12.0◦ 0.31m, 12.0◦ 0.10m, 6.82◦

Office 2.5x2x1.5m 0.04m, 0.78◦ 0.48m, 7.68◦ 0.48m, 8.04◦ 0.15m, 4.23◦

Pumpkin 2.5x2x1m 0.04m, 0.68◦ 0.47m, 8.42◦ 0.61m, 7.08◦ 0.22m, 5.40◦

Red Kitchen 4x3x1.5m 0.04m, 0.76◦ 0.59m, 8.64◦ 0.58m, 7.54◦ 0.14m, 3.71◦

Stairs 2.5x2x1.5m 0.32m, 1.32◦ 0.47m, 13.8◦ 0.48m, 13.1◦ 0.30m, 8.08◦

Average 0.08m, 1.60◦ 0.44m, 10.4◦ 0.47m, 9.81◦ 0.17m, 5.26◦

Table 1: Relocalization results for the 7 Scenes dataset. We show median performance for
our method on all scenes against three state-of-the-art methods: SCRF [33], PoseNet [21]
and Bayesian PoseNet [20].

Figure 2: Pixel-wise prediction error distribution from the regression forests. Heat maps
show the prediction error distribution directly from the regression forests on the Chess and
Heads scenes. Large errors occur on black screens and other texture-less regions.

Results and analysis We present our main results in Table 1. Our method considerably
outperforms the PoseNet and Bayesian PoseNet on all scenes. We note, however, that the
PoseNet based methods need only RGB images for both training and test. Our method is not
as accurate as the SCRF method. However, our approach does not require the depth image
at test time which greatly lightens the requirements of end users.

The best performance of our method is on the Heads Scene. The worst performance is
the Stairs in which the SCRF approach has the same problem due to the repetitive proper-
ties of the scene. The second worst scene is Pumpkin in which there are large uniformly
colored planes, such as the cabinet or the ground. The lack of color distinction degrades the
localization capability.

To separately evaluate the performance of random RGB features, we visualize the pixel-
wise prediction error using heat maps as shown in Fig. 2. The error is the truncated distance
between the predicted 3D locations and the ground truth. The typical large error areas are
black screens and other texture-less regions, which are intractable for low-level visual fea-
tures.

The pose refinement step by integrating sparse feature matching proved crucial to achieve
good results. With this turned off, our RGB forest achieves only median localization result
0.21m,6.09◦ for Chess and 0.25m,8.53◦ on Fire, for instance.

4.2 Sports camera calibration
In sports such as basketball and soccer, the main broadcasting cameras are pan tilt zoom
(PTZ) cameras with fixed locations. Different from the conventional camera relocalization



: EXPLOITING RANDOM RGB AND SPARSE FEATURES FOR CAMERA POSE ESTIMATION7

in which the focal length is fixed, a PTZ camera has large variation in focal length. Another
issue is highly dynamic movements of players, which cause more noise in the training and
test data. All these factors make sports camera calibration very challenging under near real-
time response constraints.
Labels The camera pose is decomposed to pan, tilt and focal length (θ ,φ , f ) [8]. For an
image location p, the label is m = (θp,φp, fp):





θp = θ + arctan
x−u

f

φp = φ + arctan
y− v

f

fp =
√

f 2 +(x−u)2 +(y− v)2

(9)

where (u,v) is the principal point and (θp,φp, fp) approximate the pan, tilt angles and focal
length of the location p [42].
Objective function We use the “error or fit” energy function [5]:

E(S) =
1
|S|∑‖w(m− m̄)‖2

2 (10)

where the weight w jointly optimizes the angles and the focal lengths. The typical focal
length is around 2,000 pixels and camera angle range is around 80o. We experimentally set
w = [1,1,1e−3]T to mostly eliminate angular errors.

At test time, each sampled pixel gives a closed form solution for (θ ,φ , f ) using Eq. 9.
As a result, our method can simply vote for the best result without using RANSAC.
Dataset The basketball dataset records an indoor high-school basketball match using a
PTZ camera at 1280× 720 resolution and 30 FPS. ‘Timeouts’ were manually removed, re-
sulting in ‘in-play’ data divided into four sequences. The ground truth labels were annotated
manually and refined by the point-less calibration method [6]. These sequences were uni-
formly sampled at 3 FPS to remove frame content similarities. The downsampling is a prac-
tical strategy to speed up calibration by linearly interpolating the remaining frames during
the test.

The dataset is much larger than the 7 Scenes dataset in the space scale with a spatial extent
of 20×30×6m. Fig. 3 shows the camera trajectory of one sequence and three example im-
ages. The video sequences exhibit various difficulties, especially significant player dynamics
and severe motion blur. As currently there are few sports camera calibration datasets, we will
make this dataset publicly available.
Error metric We report the percentage of test frames for which the estimated camera pose
is essentially ‘correct’. We define the correctness as: the camera parameters are within 2◦

pan-tilt angular error and 10% of focal length error compared with the ground truth. To better
make use of the relative small amount of data and reflect the varying challenges in different
sequences for different methods, we employ leave-one-out cross validation (e.g. train with
sequences 1, 2, 3 and test on sequence 4), and report the corresponding results.
Main results Table 2 shows the PTZ camera estimation results with two strong base-
lines. The ‘sparse’ baseline uses accurate sparse feature matching techniques [26], while
the PoseNet [21] baseline is originally designed to estimate 6D camera pose in large-scale
scenes. Our method achieved best performance in accuracy and nearly real-time response.
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Figure 3: Highly dynamic basketball dataset. Top row: pan, tilt and zoom parameters of an
example sequence. The camera trajectories exhibit varying changes. Bottom row: examples
of images which have typical challenges for camera pose estimation such as motion blur,
dynamic objects and narrow field of view.

Quick response is crucial for online sports broadcasting which only tolerates several sec-
onds delay. At test time, our method achieves 5 FPS response running on a single CPU
core with 2.3 GHz, and can achieve real-time response with GPU acceleration. At 5 FPS,
our method is practically useful as the system can skip some frames and linearly interpolate
the result from neighboring frames. The experiment results demonstrate that our method
performs significantly better than the deep neural network based method in accuracy. Com-
pared with the offline sparse feature based method, our method achieves superior or on-par
performance in accuracy while significantly improving efficiency. Considering the practical
camera calibration application which needs both fast speed and accurate performance, our
method provides a better choice.

Test Sequence Baselines Our Results
(# Frames) Sparse RGB PoseNet PoseNet+Sparse RF + voting RF+Sparse
Hardware CPU GPU GPU+CPU CPU CPU
Seq 1 (360) 88.9% 25.6% 79.2% 59.7% 86.1%
Seq 2 (270) 93.0% 50.4% 92.9% 67.8% 94.4%
Seq 3 (180) 95.6% 52.8% 98.3% 98.9% 97.8%
Seq 4 (180) 88.3% 49.5% 97.8% 98.9% 100%
Timings/frame 26s 0.005s —- 0.08s 0.2s

Table 2: PTZ camera calibration results. We compare our method with the sparse feature
based method [26], PoseNet [21], and PoseNet+Sparse. The percentages are of ‘correct’
test frames (within 2◦ in pan and tilt angular error and 10% of focal length error). The best
performance is highlighted. Our method achieves the best performance considering accuracy
and speed at the same time for sports camera calibration.
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(a) (b) (c)
Figure 4: Qualitative result. (a) Moderate motion blur; (b) Narrow field of view; (c) Severe
motion blur (best viewed in color). The standard basketball court lines are overlaid on the
original images to indicate the accuracy of the calibration. Our method achieves satisfactory
results on (a) and (b). It does not perform very well with severely motion-blurred images (c).

Analysis and discussion An interesting finding is that random forests with simple voting
achieves unexpected high accuracy (98.9%) in sequence 3 and 4. We further explored the two
sequences by manually examining the video sequences. We found that the two sequences
have typical challenges such as motion blur. Both of them have relatively small variations
in focal length compared with the other two sequences. So we believe the variations in
focal length present the major difficulty as we do not explicitly model the scale-invariant
property in the random forest. The SIFT feature in the camera refinement step significantly
improves the accuracy (about 27%) in sequence 1 and 2. This phenomenon demonstrates
the complementary property of the random features and sparse features. We also added our
pose refinement step to the PoseNet. By doing so obtains similar result with our method but
needs powerful GPU.

We present qualitative results in Fig. 4, showing both success and failures of our method.
The standard basketball court lines are overlaid on the original images to indicate the accu-
racy of the calibration. We found that our method can accurately estimate camera pose from
moderate motion blur (Fig. 4 (a)) and narrow field of view (Fig. 4 (b)). However, it does not
perform very well when there is severe motion blur in the images (Fig. 4 (c)).

4.3 Implementation details

Our proposed approach is implemented with C++ using OpenCV [4] and VXL [1] on an Intel
2.3 GHz, 8GB memory Mac System. For the random forest, the parameter settings are: tree
number T = 10; 500 and 200 training images per tree for 7 Scenes and basketball dataset,
respectively; 5,000 randomly sampled example pixels per training image. We use a modified
32-dimension SIFT feature from the VLFeat library [39] for sparse feature matching. The
SIFT feature computation is still the bottleneck of the current implementation, the frame-rate
response can be achieved with the GPU SIFT [41]. For the camera pose optimization, we
use off-the-shelf solvePnPRansac in OpenCV.

We run the PoseNet baseline using the code by its original author on a Linux machine
with an Nvidia GeForce GTX670 GPU. We use the pre-trained weights to initialize the
network weights.
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5 Conclusion and future work
In this paper, we proposed a hybrid method using RGB random features and sparse features
for camera pose estimation. The method uses a single RGB-only image in the test and
achieves near real-time response. The comparisons on the challenging 7 Scenes dataset with
three strong baselines demonstrate the efficacy of our method, showing comparable results
with state-of-the-art methods. The experimental results on the new basketball dataset show
that our method achieves superior or on-par performance for PTZ sports camera calibration,
extending the regression forest based methods to large-scale dynamic scenes.

In the future, we would like to improve prediction accuracy using deep features. We also
plan to investigate the possibility of integrating accurate sparse features with the random
features in the training phase so that we can further improve the prediction accuracy from
random regression forests.
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