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Abstract

A semi-supervised video object segmentation algorithm using multiple random walk-
ers (MRW) is proposed in this work. We develop an initial probability estimation scheme
that minimizes an objective function to roughly separate the foreground from the back-
ground. Then, we simulate MRW by employing the foreground and background agents.
During the MRW process, we update restart distributions using a hybrid of inference
restart rule and interactive restart rule. By performing these processes from the sec-
ond to the last frames, we obtain a segment track of the target object. Furthermore, we
optionally refine the segment track by performing Markov random field optimization.
Experimental results demonstrate that the proposed algorithm significantly outperforms
the state-of-the-art conventional algorithms on the SegTrack v2 dataset.

1 Introduction
Video object segmentation, the task to separate objects from the background in a video se-
quence, is challenging due to various difficulties, e.g. object deformation, ambiguous bound-
aries, motion blur, and occlusion. To overcome these issues, many attempts have been made,
which can be classified into three categories according to the types of user annotation: unsu-
pervised algorithms [13, 17, 21, 35, 38], semi-supervised ones [11, 18, 39, 45], and super-
vised ones [2, 14, 15, 42].

The unsupervised algorithms automatically discover objects without requiring any user
input. They usually assume that the object to be segmented has distinct motion or appear
frequently in a video. The semi-supervised algorithms require user annotations about the
desired object at the first frame. They then perform segmentation and tracking jointly. The
supervised algorithms demand user annotations repeatedly during the segmentation process
to extract precise segment tracks. As the supervised ones need too much user effort, the
unsupervised or semi-supervised ones are more desirable in practical applications.

In this work, we propose a novel semi-supervised video object segmentation algorithm.
First, for each frame, we estimate initial distributions of the foreground and the background
based on the segmentation results of previous frames. Second, we simulate multiple random
walkers (MRW) [27] using a hybrid of inference restart rule and interactive restart rule. We
perform these two-step processes from the second to the last frames sequentially to yield a
segment track. Optionally, we refine the segmentation results by performing Markov random
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field (MRF) optimization. Experimental results demonstrate that the proposed algorithm
outperforms the state-of-the-art conventional algorithms [8, 18, 36, 41] on the SegTrack v2
dataset [29]. To summarize, this paper has three main contributions:

• Development of an effective restart rule for MRW that yields spatially precise and
temporally consistent segment tracks.

• Fixation of all parameters, which ensures promising performances on general video
sequences without exhaustive parameter tuning.

• Remarkable performance achievement on the SegTrack v2 dataset, which is composed
of challenging video sequences.

2 Related Work

2.1 Unsupervised Video Segmentation and Video Object Segmentation
Unsupervised video segmentation is a problem to divide all pixels in a video into mutu-
ally disjoint clusters of spatiotemporally coherent pixels. To this end, motion segmentation
techniques [5, 33, 38] cluster long point trajectories, which can be converted into dense seg-
ments [32]. Inspired by [16], Grundmann et al. [21] perform agglomerative clustering on
a spatiotemporal graph to achieve video segmentation. Galasso et al. [17] apply spectral
clustering to divide a video sequence. Khoreva et al. [26] propose a video segmentation
algorithm based on machine learning that trains affinities between superpixels.

On the other hand, unsupervised video object segmentation yields segment tracks of
salient objects. By assuming that an important object appears frequently across frames, video
object segmentation algorithms [28, 31, 47], which exploit the object proposal technique
in [12], have been proposed. Also, visual and motion saliency maps are adopted for video
object segmentation in [13, 35, 43]. Li et al. [29] first generate many hypotheses and then
track them to yield multiple segment tracks. They also provide the SegTrack v2 dataset.
Jang et al. [25] estimate initial distributions of the foreground and background by using the
boundary priors, and then optimize them alternately to obtain a precise segment track.

2.2 Semi-supervised Video Object Segmentation
In semi-supervised video object segmentation, a user specifies an object region to be tracked.
It is possible to annotate the target object using interactive image segmentation techniques,
such as [22, 37]. Alternatively, tracking-by-segmentation algorithms [8, 11, 18, 41] take an
object box as input. Their objective is, however, to track the box instead of accurate seg-
mentation. Chockalingam et al. [9] divide an object into fragments and build its Gaussian
mixture models for non-rigid object tracking in sequential frames. Tsai et al. [39] perform
MRF optimization using appearance similarity and motion coherence to separate a fore-
ground object from the background. They also gather the SegTrack dataset, composed of six
video sequences. Budvytis et al. [6] construct a tree-structured graphical model for segment-
ing an object, which is manually labeled in the first and last frames. Also, Budvytis et al. [7]
infer foreground labels from the mixture of tree-structured graphical models, and combine
them with the prediction of a self-trained classifier. Ramakanth and Babu [36] extract video
seams to transfer labels in a previous frame to a current frame. Varas and Marques [40] apply
a particle filter [23] for video object segmentation. Jain and Grauman [24] over-segment a
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Figure 1: An overview of the proposed algorithm. Using segmentation labels at previous
frames, we initialize foreground and background distributions for each frame. Then, we
simulate MRW using the inference restart rule and the interactive restart rule. For the seg-
mentation, we compare the foreground and background probabilities at each superpixel.

video into supervoxels and minimize an MRF energy function using supervoxel characteris-
tics. Wen et al. [45] roughly predict foreground regions based on the superpixel matching,
and then update a multi-part model of a target object via iterative energy optimization.

3 Proposed Algorithm

We propose a novel semi-supervised video object segmentation algorithm. The input is a set
of video frames {I(1), . . . , I(T )} and a pixel-level object annotation at the first frame s(1). The
output is a segment track of the object. We annotate an object in the first frame by employing
the interactive image segmentation technique in [22], which accepts scribbles as input.

Figure 1 is an overview of the proposed algorithm. First, we extract color and motion
features for each superpixel, and construct a graph using the superpixels. Second, we es-
timate initial foreground and background distributions. By simulating the MRW process,
we separate the foreground from the background. During the iteration, we fix the inference
restart rule but adapt the interactive restart rule. To yield a segment track, we execute these
processes sequentially from the second to the last frames.

3.1 Feature Extraction and Graph Construction

We over-segment each frame into about 1,000 SLIC superpixels [1], which become nodes
in a graph. Also, we estimate backward optical flows from I(t) to I(t−1) and I(t−2) [30]. For
each superpixel, we extract its features, by computing the average LAB color and the average
motion vector. For each frame, we construct a graph G = (V,E), where V = {v1, . . . ,vN} is
a set of nodes (or superpixels) and E = {ei j} is a set of edges. We link edges between
superpixels according to the k-ring connectivity. In the k-ring graph, two nodes are connected
if we can traverse from one to the other through connected neighbors within k transitions.

We set an edge weight (or affinity) between nodes i and j by

wi j =

{
exp

(
−‖xi−x j‖2

2/σ2
)

if ei j ∈ E,
0 otherwise, (1)

where xi and x j denote the features of nodes i and j, and σ is a scale parameter.
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3.2 Initial Foreground and Background Estimation

We estimate initial foreground and background distributions by exploiting the segmentation
results at previous frames. To this end, we formulate an energy function. By minimizing the
energy function, we first estimate the initial distribution of background, p(0)

b , and then that

of foreground, p(0)
f . Note that, in p(0)

b and p(0)
f , the superscript ‘0’ means the iteration index,

not the frame index. The distributions will be refined in MRW iterations later.
The energy function consists of three terms: color Markov energy, motion Markov en-

ergy, and guidance energy. It is given by

E(p,u) = λc‖Acp−p‖2
2 +λm‖Amp−p‖2

2 +λg‖p−u‖2
2 (2)

and is minimized with respect to the probability distribution p, where

0≤ pi ≤ 1, ∑N
i=1 pi = 1. (3)

Also, Ac and Am are color and motion transition matrices. By normalizing affinities in (1),
we compute each element in the transition matrices, ai j = wi j/∑l wl j, which indicates the
proportion that a probability is transferred from node j to node i. The color and motion
transition matrices, Ac and Am, disperse probabilities according to the color and motion
features, respectively. Also, u denotes a guidance distribution, which is set differently for
estimating the foreground and background distributions. The multipliers, λc, λm, and λg,
adjust the trade-offs between the two Markov energies and the guidance energy. Let us
describe these energy terms.

The color and motion Markov energies compel the probabilities to be distributed based
on the random walk theory [10]. In the random walk simulation, a random walker (or agent)
travels on a graph according to a transition matrix, and the recursion is given by

p(θ+1) = Ap(θ) (4)

where θ indicates an iteration index. The stationary distribution can be found when the
squared distance ‖Ap(∞)−p(∞)‖2

2 is minimized to 0. In the stationary distribution, neigh-
boring nodes with similar features tend to have similar probabilities, since there are frequent
transitions between them. Therefore, we adopt the two Markov energies to encourage similar
neighboring nodes to have the same segmentation label (foreground or background), based
on the color and motion attributes.

By adopting the guidance energy, we make p similar to the guidance distribution u. Dif-
ferent guidance distributions are used for estimating the initial foreground and background
distributions, while the color and motion Markov terms are used in common. To obtain the
initial background distribution p(0)

b , we compute the ith element ub,i of the guidance dis-
tribution using the segmentation result at the previous frame. To this end, we define the
propagation matrix H(t,t̃) = [h(t,t̃)i j ], which computes overlap ratios between superpixels at
frame t and frame t̃, matched by the optical flows. Note that each row in the propagation
matrix is normalized so that ∑ j h(t,t̃)i, j = 1. We transfer the inverses of the segmentation labels
at the previous frame t−1 to the current frame t by

ub,i = α ∑
j

w(t,t−1)
i j h(t,t−1)

i j (1− s(t−1)
j ) (5)
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Figure 2: An example of the initial background and foreground estimation. The foreground
guidance distribution uf is obtained from the initial background distribution p(0)

b . High initial

foreground probabilities p(0)
f are assigned to the girl’s right arm as well, which is not visible

in the frame t−1. We mark the arm with yellow boundaries at frame t.

where w(t,t−1)
i j is an inter-frame affinity between node i at frame t and node j at frame t−1.

We measure the inter-frame affinity by comparing their average LAB colors. Also, s(t−1)
j is

the segmentation label of node j at frame t− 1. Specifically, s(t−1)
j = 1 if the superpixel is

labeled as the foreground and s(t−1)
j = 0 otherwise. The parameter α is set to normalize the

guidance distribution ub into a probability distribution. By plugging this guidance distribu-
tion into (2) and minimizing the energy function, we exploit the segmentation labels at the
previous frame to infer the initial background distribution p(0)

b at the current frame.

After determining the initial background distribution p(0)
b , we estimate the initial fore-

ground distribution p(0)
f . For the foreground estimation, we exploit the information in p(0)

b ,
instead of the segmentation labels at the previous frame. The initial background distri-
bution p(0)

b tends to yield very low probabilities on the nodes corresponding to the target
object. We, hence, simply set the ith element of the foreground guidance distribution via
uf,i ∝ exp(−p(0)b,i ). In this way, newly appearing parts, as well as already visible parts, of the
target object can have high foreground guidance probabilities. If we set the guidance dis-
tribution by propagating the foreground labels at the previous frame, newly appearing parts
may be misguided by low guidance probabilities.

Since the minimization of E(p,u) in (2) subject to the constraints in (3) is a quadratic
program [3], we minimize E(p(0)

b ,ub) and E(p(0)
f ,uf) using [19, 20]. Figure 2 exemplifies

the initial background and foreground estimation. The girl’s right arm, which is not visible
in frame t−1, yields low probabilities in p(0)

b . Thus, by exploiting the information in p(0)
b to

set the guidance distribution uf, we obtain high initial foreground probabilities on the arm.
Note that p(0)

b and p(0)
f roughly delineate the background and the girl, respectively.

3.3 Segmentation Using Multiple Random Walkers
We refine the foreground and background distributions, using MRW, in order to separate the
foreground from the background. MRW simulates movements of multiple agents [27]. In the
MRW system, agents interact with one another by adapting their restart distributions, while
the random walk with restart [34] uses a fixed restart rule. For the video object segmentation,
we define double agents, i.e. foreground and background agents. To simulate interactions
between them, we combine a time-invariant restart rule with a time-varying restart rule.
MRW System: In this work, we employ the foreground and background agents on a graph.
Let p(θ)

f = [p(θ)f,1 , · · · , p(θ)f,N ]
T and p(θ)

b = [p(θ)b,1 , · · · , p(θ)b,N ]
T be vectors, in which p(θ)f,i and p(θ)b,i are
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the probabilities that the foreground and background agents are found at node i at iteration
θ , respectively. The movements of the foreground and background agents are modeled by

p(θ+1)
f = (1− ε)Acp(θ)

f + εr(θ)f , (6)

p(θ+1)
b = (1− ε)Acp(θ)

b + εr(θ)b , (7)

where r(θ)f = [r(θ)f,1 , · · · ,r
(θ)
f,N ]

T and r(θ)b = [r(θ)b,1 , · · · ,r
(θ)
b,N ]

T are the foreground and background
restart distributions. Ac is the color transition matrix in (2). With probability 1−ε , the agents
move on the graph according to the transition matrix Ac. On the other hand, with probability
ε , the foreground and background agents are forced to restart with the distributions r(θ)f and
r(θ)b , respectively. The MRW system makes the agents interact with each other via these
restart distributions. Specifically, to achieve the interactions, a restart rule determines the
restart distributions r(θ)f and r(θ)b by considering both p(θ)

f and p(θ)
b . It was proven in [27]

that the MRW process converges to a stationary distribution πf and πb for any restart rule, by
introducing a cooling factor. We set the cooling factor to 0.995. While the 1-ring graph is
used for the foreground distribution in (6), the 4-ring graph is employed for the background
one in (7). Note that the four sides of an image usually belong to the background [44, 46],
and superpixels along the sides are connected to a small number of nodes. Hence, we provide
a wider connection for the background agent than for the foreground agent.
Restart Rules: We propose two restart rules: inference restart rule and interactive restart
rule. For simplicity, let us describe the algorithm from the viewpoint of the foreground
agent. The background agent is handled in a symmetrical manner.

The inference restart rule is time-invariant and inferred from the previous segmentation
labels. We propagate the segmentation results s(t−2) and s(t−1) at the two previous frames to
the current frame to determine the inference restart rule, which is given by

qf = β ×p(0)
f ⊗ (H(t,t−2)s(t−2)+H(t,t−1)s(t−1)), (8)

where⊗ indicates the element-wise multiplication, p(0)
f is the initial foreground distribution,

H(t,t̃) is the propagation matrix defined in Section 3.2, and β normalizes the inference restart
distribution qf. Since the inference restart rule is time-invariant, we allocate high probabili-
ties to reliable superpixels only, where both initial and propagated probabilities are high.

Next, we define the interactive restart rule that encourages interactions between the
agents. Specifically, at each iteration θ , we update the interactive restart distribution y(θ)f =

[y(θ)f,1 , · · · ,y
(θ)
f,N ]

T as follows. By considering the probabilities at neighboring nodes, we com-
pute the amount of interactive restart at node i via

y(θ)f,i =
p(θ)f,i +∑ j∈Ni wi j p

(θ)
f, j

(p(θ)f,i +∑ j∈Ni wi j p
(θ)
f, j )+(p(θ)b,i +∑ j∈Ni wi j p

(θ)
b, j )

(9)

whereNi is the set of connected neighbors of node i, and wi j denotes the LAB color affinity
between node i and node j. A high amount of foreground restart is assigned to a node if
its neighbors, which yield similar features, have higher foreground probabilities than back-
ground ones. While the repulsive restart rule in [27] determines the restart amount at each
node using the probabilities on that node only, we also exploit the probabilities on the neigh-
boring nodes to suppress noisy restarts.



JANG AND KIM: SEMI-SUPERVISED VIDEO OBJECT SEGMENTATION USING MRW 7

(a) p(1)
f (b) p(2)

f (c) p(3)
f (d) πf (e) Input frame

(f) p(1)
b (g) p(2)

b (h) p(3)
b (i) πb (j) s

Figure 3: The distributions of the foreground agent p(θ)
f and the background agent p(θ)

b are
visualized for the first three MRW iterations. The segmentation labels in s are determined by
comparing the two stationary distributions, πf and πb.

Then, we set the foreground restart distribution r(θ)f at each iteration θ in (6), by com-
bining (8) and (9),

r(θ)f = (1−δ ) ·qf +δ ·y(θ)f , (10)

where δ is a weight to blend the time-varying distribution y(θ)f with the invariant one qf.
Using this hybrid restart rule, we perform the MRW iterations to obtain the stationary distri-
butions πf and πb of the foreground and background agents, respectively.

Figure 3 visualizes the evolvement of the foreground and background distributions in
the MRW simulation. As the iteration goes on, the foreground and background agents yield
more mutually exclusive probabilities. Eventually, the stationary distributions, πf and πb,
accurately delineate the target object and the background regions.

Segmentation Labeling: After obtaining the foreground and background stationary distri-
butions πf and πb, we label each superpixel by comparing the two probabilities on it. As the
foreground and the background have different sizes in general, the corresponding distribu-
tions should be scaled for adequate comparison. Thus, we scale the stationary distributions
by their the maximum probabilities, respectively. Then, we decide segmentation label s(t)i of
node i at frame t by

s(t)i =

{
1 if πf,i/max j (πf, j)> πb,i/max j (πb, j),
0 otherwise. (11)

3.4 Pixel-wise Markov Random Field Optimization

Optionally, we further refine the segmentation results at the superpixel level into those at the
pixel level. We follow the MRF optimization in [47]. Specifically, we construct RGB color
and positional Gaussian mixture models for the foreground and background regions. Also,
we encourage the spatiotemporal neighbors to have the same labels using a pairwise term.
We employ the graph-cut algorithm [4] to perform the optimization. Note that the Gaussian
mixture models and the pairwise term are computed using all pixels in all frames. Hence,
this refinement is offline, while the other processes of the proposed algorithm are online.
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Table 1: The average numbers of mislabelled pixels per frame on the SegTrack dataset [39].
Lower values are better. The best and the second best results among the fixed parameter
methods are boldfaced and underlined, respectively.

Tuned parameters Fixed parameters
Sequence [7] [36] [45] [9] [39] [6] [41] [18] [40] [24] [8] MRW MRW-MRF
Birdfall 508 186 163 454 252 468 1204 466 243 189 481 215 169
Cheetah 855 535 806 1216 1142 1501 2765 1431 391 1170 2825 740 654

Girl 1200 761 1904 1755 1304 1705 10505 6338 1935 2883 7790 1527 1203
Monkeydog 412 358 342 683 563 736 2466 809 497 333 5361 428 337
Parachute 296 249 275 502 235 404 2369 1028 187 228 3105 331 198
Penguin 1736 355 571 6627 1705 19310 9078 6239 903 443 11669 883 1459

Table 2: IoU scores on the SegTrack v2 dataset [29]. The best and the second best results
among the fixed parameter methods are boldfaced and underlined. (-) indicates segmentation
failures, and the average scores (∗) are computed without the failed sequences.

Tuned parameters Fixed parameters
Target object (Number of frames) [45] [18] [41] [8] [36] MRW MRW-MRF

Girl (21) 84.6 53.6 52.4 62.0 62.4 83.0 86.6
Birdfall (30) 78.7 56.0 32.5 36.4 9.36 61.6 68.3

Parachute (51) 94.4 85.6 69.9 59.3 92.5 91.1 94.7
Cheetah-Deer (29) 66.1 46.1 33.1 38.7 17.7 56.4 63.0

Cheetah-Cheetah (29) 35.3 47.4 14.0 19.7 0.69 30.0 33.0
Monkeydog-Monkey (71) 82.2 61.0 22.1 25.7 4.96 74.2 77.3

Monkeydog-Dog (71) 21.1 18.9 10.2 3.83 9.03 17.1 16.5
Penguin-#1 (42) 94.2 54.5 20.8 40.1 80.2 88.1 80.6
Penguin-#2 (42) 91.8 67.0 20.8 37.9 73.1 87.4 80.0
Penguin-#3 (42) 91.9 7.59 10.3 31.2 46.3 84.8 74.0
Penguin-#4 (42) 90.3 54.3 13.0 30.2 51.6 79.2 74.5
Penguin-#5 (42) 76.3 29.6 18.9 10.7 53.7 74.2 61.6
Penguin-#6 (42) 88.7 2.09 32.3 35.0 70.1 86.7 81.1

Drift-#1 (74) 67.3 62.6 43.5 57.2 42.9 80.8 80.7
Drift-#2 (74) 63.7 21.8 11.6 13.8 11.1 37.8 37.8

Hummingbird-#1 (29) 58.3 11.8 28.8 25.1 14.0 48.9 56.6
Hummingbird-#2 (29) 50.7 - 45.9 44.2 36.8 41.6 41.6

Frog (279) 56.3 14.5 45.2 38.8 63.4 42.8 48.4
Worm (243) 79.3 36.8 27.4 44.3 72.4 67.9 60.6
Soldier (32) 81.1 70.7 43.0 54.2 71.9 60.8 69.7
Monkey (31) 86.0 73.1 61.7 58.7 76.1 86.1 73.2

Bird of Paradise (98) 93.0 5.10 44.3 46.5 82.3 85.3 83.2
BMX-Person (36) 88.9 2.04 27.9 36.0 44.5 78.8 77.2
BMX-Bike (36) 5.70 - 6.04 3.86 0.00 8.93 6.94
Mean per object 71.8 40.1∗ 30.7 35.6 45.3 64.7 63.6

Mean per sequence 72.2 41.0∗ 37.0 40.4 48.8 64.2 64.7

4 Experimental Results

We evaluate the proposed algorithm on the SegTrack [39] and SegTrack v2 [29] datasets.
Both datasets provide video sequences and the corresponding ground-truth label maps. We
set σ2 to 0.01 for both color and motion features in (1). In (2), we set λc, λm, and λg to 1, 2,
1, respectively. The restart probability ε is set to 0.4 in (6) and (7), and δ is set to 0.3 in (10).
Notice that we fix all parameters. This fixation is desirable, since it is important to provide
reliable performance without manual tuning. We will make the code publicly available.

SegTrack [39] is a subset of SegTrack v2 [29]. We measure the average number of mis-
labelled pixels per frame to evaluate the segmentation performance on the SegTrack dataset,
as done in [24, 36, 39, 40, 45]. We compare the proposed algorithm with eleven algorithms:
three tracking-by-segmentation methods [8, 18, 41] and eight semi-supervised video object
segmentation methods [6, 7, 9, 24, 36, 39, 40, 45]. Also, we check whether the algorithms
tune parameters for each sequence or not, and categorize them into tuned parameters or fixed
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(g) Frame 7 (h) Frame 44 (i) Frame 70 (j) Frame 3 (k) Frame 22 (l) Frame 36

Figure 4: Qualitative results. Segmentation boundaries are depicted in yellow. (a)∼(c),
(d)∼(f), (g)∼(i), and (j)∼(l) are from the “Cheetah-Deer,” “Monkeydog-Monkey,” “Drift-
#1,” and “BMX-Person,” respectively.

parameters, respectively. Then, we do not directly compare the proposed algorithm with the
methods that tune parameters for each sequence. Table 1 lists the performances of the pro-
posed algorithm and the conventional algorithms on the SegTrack dataset. The scores of the
conventional algorithms are from [7, 24, 36, 40, 45]. MRW and MRW-MRF denote the pro-
posed algorithm without and with MRF optimization, respectively. Notice that the proposed
algorithm outperforms most conventional algorithms on most sequences.

SegTrack v2 [29] consists of 14 video sequences and includes 24 objects. The sequences
are challenging due to motion blur (“girl” and “hummingbird”), ambiguous boundaries
(“birdfall,” “cheetah,” “penguin,” and “soldier”), and object deformation (“cheetah,” “mon-
keydog,” “drift,” “hummingbird,” “frog,” “worm,” and “BMX”). While SegTrack consists
of short video clips with 21∼71 frames, SegTrack v2 includes longer clips with up to 279
frames. We compute the intersection over union (IoU) score between a segmentation result
and the ground-truth label map, as done in [45].

In Table 2, we compare the proposed algorithm with the five conventional algorithms
in [8, 18, 36, 41, 45]. The IoU scores of the conventional algorithms are from [45], except
for [36]. For [36], we use the default setting in their source code. We see that the proposed
algorithm significantly outperforms all conventional algorithms on most sequences. More
specifically, the proposed algorithm ranks 1st on 18 objects among the 24 objects. Also, we
report two average scores, mean per object and mean per sequence. The mean per object
assesses a video object segmentation algorithm by averaging its scores on all 24 objects.
On the other hand, to compute the mean per sequence, we first calculate the mean score of
objects within each sequence, and then average them. The proposed algorithm outperforms
the conventional ones in terms of both metrics. The MRF refinement improves the mean
per sequence performance to a small degree, but degrades the mean per object performance
slightly.

Figure 4 shows qualitative segmentation results of the proposed algorithm. Even though
the target objects suffer from superposition (“cheetah” and “drift”), ambiguous boundaries
(“cheetah”), and deformation (all four examples), the resultant segment tracks delineate them
accurately. We present more segmentation results in supplementary materials.

Initial Segmentation Method: We analyse segmentation qualities according to the initial in-
teractive segmentation algorithm. For the “Bird of Paradise” sequence, we use GrabCut [37]
instead of [22] in the first frame. Figure 5 exemplifies the segmentation results of the pro-
posed algorithm according to the initial segmentation methods. While [37] misleads the
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(a) User input (b) Frame 1 (c) Frame 9 (d) Frame 17 (e) Frame 25

Figure 5: Segmentation results of the proposed algorithm according to the interactive seg-
mentation method in the first frame. The upper and lower rows are the resultant segmenta-
tions using [22] and [37], respectively. Segmentation boundaries are depicted in yellow. The
frames are from the “Bird of Paradise.”

(a) Frame 107 (b) Frame 219 (c) Frame 354 (d) Frame 439 (e) Frame 567

Figure 6: A segment track on the long sequence. Segmentation boundaries are depicted in
yellow. The frames are from the “Bike Riding.”

proposed algorithm initially, the target object is recovered in the later frames.
Long Sequence: We apply the proposed algorithm to a long sequence to observe evolve-
ments of segments as time goes on. Among the sequences in the VidSeg dataset [25], we use
the “Bike Riding” sequence, which consists of 631 frames. Figure 6 displays segmentation
results on it. The proposed algorithm even yields robust segments in the later frames.
Running Time Analysis: We count a running time of the proposed algorithm by seconds
per frame (SPF). For the “Girl” sequence at 400× 320 resolution, we measure SPF of the
proposed method on a PC with a 2.2GHz CPU. The proposed algorithm runs at 26.8SPF.

5 Conclusions
We proposed a novel semi-supervised video object segmentation algorithm. We first esti-
mated initial distributions of the foreground and background. Then, we simulated MRW us-
ing a hybrid of the inference restart rule and the interactive restart rule. We performed these
processes from the second to the last frames to extract a segment track of a target object.
Furthermore, we optionally refined the segment track by performing the MRF optimization.
Experimental results demonstrated that the proposed algorithm significantly outperforms the
state-of-the-art conventional algorithms [8, 18, 36, 41] on the SegTrack v2 dataset [29].

Acknowledgement
This work was supported partly by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. NRF-2015R1A2A1A10055037), and partly
by the MSIP, Korea, under the ITRC support program supervised by the Institute for Infor-
mation &communications Technology Promotion (No. IITP-2016-R2720-16-0007).



JANG AND KIM: SEMI-SUPERVISED VIDEO OBJECT SEGMENTATION USING MRW 11

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC superpixels

compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach.
Intell., 34(11):2274–2282, 2012.

[2] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video SnapCut: Robust video object cutout
using localized classifiers. ACM Trans. Graphics, 28(3):70, 2009.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001.

[5] T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories.
In ECCV, pages 282–295. 2010.

[6] I. Budvytis, V. Badrinarayanan, and R. Cipolla. Semi-supervised video segmentation
using tree structured graphical models. In CVPR, pages 2257–2264, 2011.

[7] I. Budvytis, V. Badrinarayanan, and R. Cipolla. MoT-Mixture of trees probabilistic
graphical model for video segmentation. In BMVC, pages 1–11, 2012.

[8] Z. Cai, L. Wen, Z. Lei, N. Vasconcelos, and S. Z. Li. Robust deformable and occluded
object tracking with dynamic graph. IEEE Trans. Image Process., 23(12):5497–5509,
2014.

[9] P. Chockalingam, N. Pradeep, and S. Birchfield. Adaptive fragments-based tracking of
non-rigid objects using level sets. In ICCV, pages 1530–1537, 2009.

[10] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[11] S. Duffner and C. Garcia. PixelTrack: A fast adaptive algorithm for tracking non-rigid
objects. In ICCV, pages 2480–2487, 2013.

[12] I. Endres and D. Hoiem. Category independent object proposals. In ECCV, pages
575–588. 2010.

[13] A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC,
pages 1–12, 2014.

[14] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. JumpCut: Non-successive
mask transfer and interpolation for video cutout. ACM Trans. Graphics, 34(6):195,
2015.

[15] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining self training and active
learning for video segmentation. In BMVC, pages 1–11, 2011.

[16] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation.
Int. J. Comput. Vis., 59(2):167–181, 2004.

[17] F. Galasso, R. Cipolla, and B. Schiele. Video segmentation with superpixels. In ACCV,
pages 760–774. 2012.



12 JANG AND KIM: SEMI-SUPERVISED VIDEO OBJECT SEGMENTATION USING MRW

[18] M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. In
ICCV, pages 81–88, 2011.

[19] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In
Recent Advances in Learning and Control, pages 95–110. Springer, 2008.

[20] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
2014.

[21] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based
video segmentation. In CVPR, pages 2141–2148, 2010.

[22] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman. Geodesic star con-
vexity for interactive image segmentation. In CVPR, pages 3129–3136, 2010.

[23] M. Isard and A. Blake. CONDENSATION-Conditional density propagation for visual
tracking. Int. J. Comput. Vis., 29(1):5–28, 1998.

[24] S. D. Jain and K. Grauman. Supervoxel-consistent foreground propagation in video. In
ECCV, pages 656–671. 2014.

[25] W.-D. Jang, C. Lee, and C.-S. Kim. Primary object segmentation in videos via alternate
convex optimization of foreground and background distributions. In CVPR, pages 696–
704, 2016.

[26] A. Khoreva, F. Galasso, M. Hein, and B. Schiele. Classifier based graph construction
for video segmentation. In CVPR, pages 951–960, 2015.

[27] C. Lee, W.-D. Jang, J.-Y. Sim, and C.-S. Kim. Multiple random walkers and their
application to image cosegmentation. In CVPR, pages 3837–3845, 2015.

[28] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In
ICCV, pages 1995–2002, 2011.

[29] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video segmentation by tracking
many figure-ground segments. In ICCV, pages 2192–2199, 2013.

[30] C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion
Analysis. PhD thesis, Massachusetts Institute of Technology, 2009.

[31] T. Ma and L. J. Latecki. Maximum weight cliques with mutex constraints for video
object segmentation. In CVPR, pages 670–677, 2012.

[32] P. Ochs and T. Brox. Object segmentation in video: A hierarchical variational approach
for turning point trajectories into dense regions. In ICCV, pages 1583–1590, 2011.

[33] P. Ochs and T. Brox. Higher order motion models and spectral clustering. In CVPR,
pages 614–621, 2012.

[34] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic multimedia cross-modal
correlation discovery. In Proc. ACM SIGKDD, pages 653–658, 2004.

[35] A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In
ICCV, pages 1777–1784, 2013.



JANG AND KIM: SEMI-SUPERVISED VIDEO OBJECT SEGMENTATION USING MRW 13

[36] S. A. Ramakanth and R. V. Babu. SeamSeg: Video object segmentation using patch
seams. In CVPR, pages 376–383, 2014.

[37] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction
using iterated graph cuts. In ACM Trans. Graphics, volume 23, pages 309–314, 2004.

[38] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In ICCV,
pages 1154–1160, 1998.

[39] D. Tsai, M. Flagg, A. Nakazawa, and J. M. Rehg. Motion coherent tracking using
multi-label MRF optimization. In BMVC, pages 1–11, 2010.

[40] D. Varas and F. Marques. Region-based particle filter for video object segmentation.
In CVPR, pages 3470–3477, 2014.

[41] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel tracking. In ICCV, pages 1323–
1330, 2011.

[42] T. Wang, B. Han, and J. Collomosse. TouchCut: Fast image and video segmentation
using single-touch interaction. Comput. Vis. Image Understand., 120:14–30, 2014.

[43] W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic video object segmentation.
In CVPR, pages 3395–3402, 2015.

[44] Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. In
ECCV, pages 29–42. 2012.

[45] L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang. JOTS: Joint online tracking and
segmentation. In CVPR, pages 2226–2234, 2015.

[46] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-
based manifold ranking. In CVPR, pages 3166–3173, 2013.

[47] D. Zhang, O. Javed, and M. Shah. Video object segmentation through spatially accurate
and temporally dense extraction of primary object regions. In CVPR, pages 628–635,
2013.


