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Abstract

Skew and motion blur are significant challenges when camera and scene of interest
are in two different media. Skew occurs due to spatially varying refraction on a dynamic
water surface, whereas motion blur results from multiple intensities impinging on the
imaging sensor during camera exposure time due to time varying refraction. In this paper,
we introduce the notion of virtual depth map which we assign to a planar scene when
observed through a dynamic water surface and transform the deskewing problem into
one of space-variant deblurring from a single image within an alternating minimization
framework. Since the nature of the virtual depth map can change during exposure due
to change in wind properties, we also propose a shot detection framework to identify
segments of frames from the captured video which conform to a single virtual depth
map. While the overall wave motion can be arbitrary, within each segment the nature of
wave is modeled as an exponentially decaying periodic wave.

1 Introduction
The area of underwater imaging has been gaining a lot of importance in the last decade
with special emphasis on improving image quality. While degradation of underwater (UW)
images can be of different types [14], we specifically deal with skew and motion blur as
these are most common. Skew in UW images is caused by the refraction of light rays which
results in geometric distortions. During exposure time, each sensor in the camera captures
light rays from multiple scene points due to time-varying refraction caused by the dynamic
water surface, thus inducing motion blur in the captured image. We address the problem of
latent image recovery in the presence of both skew and motion blur.

There are many works in the literature which deal with the problem of deskewing.
Murase et al. [9] have used optical flow to reconstruct the water surface and to restore
the scene degraded by dynamic water surface. Efros et al. [2] pose reconstruction of images
distorted due to moving water waves as a manifold learning problem and pick the best patch
at every pixel location from the captured video. Based on bispectral analysis, Wen et al. [20]
have proposed a technique to recover UW images affected by skew. The same authors also
propose a ‘lucky’ imaging approach in [19]. Tian et al. [17] propose a model-based tracking
approach to simultaneously restore the images as well as to extract the water surface. Oreifej
et al. [10] propose a two-stage approach. In the first stage, they register every frame with
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the mean frame. This is followed by low rank minimization to recover from noise and other
errors induced in the first stage. All of these methods (except [10]) assume the video to be
captured with high frame rate to avoid motion blur. A very recent work by Seemakurthy et
al. [15] can restore images from skew as well as motion blur. However, they cannot handle
attenuation effects of water waves.

In this paper, we propose a technique to restore underwater images degraded by atten-
uated water waves. Following others [17] [10], we too assume that the static camera is
looking vertically downwards and imaging a planar scene but through spatially decaying pe-
riodic water waves (such as waves due to breeze in shallow water bodies). Also, we allow
for the attenuation factor as well as the direction of the water waves to undergo changes
during the exposure time of the camera (a situation not handled by [15]). We propose a
shot detection method that automatically segments a captured video into groups of frames
wherein each group is governed by a dominant water wave direction (i.e. unidirectional) and
a single exponential factor of attenuation. Within each segment, we average the frames and
show that the blur induced at different pixel locations are scaled versions of each other and
model these scale factors through a virtually constructed depth map. Note that despite the
scene being planar, the blur induced due to attenuated water waves is space-variant in nature.
We pose deskewing of the planar scene as equivalent to a space-variant deblurring problem
corresponding to a 3D scene with depth profile being the same as that of the virtual depth
map. We propose an alternating framework to solve for the latent image from a single blurred
observation. The procedure can likewise be repeated for other segments too, if needed.

The key contributions of our work are summarized below

• As a first of its kind, we introduce the concept of a virtual depth map which enables us
to pose the deskewing problem equivalently as a space-variant deblurring problem.

• We reveal that the blur induced by exponentially decaying unidirectional water waves
at different spatial locations can be expressed as scaled versions of one another.

• Shot detection module to segment a video into conforming groups of frames.
• An optimization framework for space-variant deblurring to solve for the latent image.

In sections 2 and 3, we propose our methodology for deskewing and deblurring (pertaining
to a single segment). Within this segment, we assume that the water waves can be modeled as
unidirectional and periodic with exponential decay. The process of shot detection to acquire
such segments from a captured video is described in section 4.

2 Relation between wave attenuation and blur
We first describe the nature of blur induced in the camera image plane while imaging a
planar scene through spatially decaying periodic water waves. Let f be the image of the
scene captured under still water. Let I(x,τ) denote the instantaneous image formed from the
light rays which gets projected onto the image plane at time τ in the presence of flowing
water. These two images can be related [17] by

I(x,τ) = f (x+w(x,τ)) (1)

where w(x,τ) is the warp at pixel x and at time τ , which can be calculated as

w(x,τ) = α5h(x,τ) (2)
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where α = h0
(
1− 1

n

)
, h0 is the height of the water column, n is the refractive index of water,

and h(x,τ) denotes the mathematical representation of dynamic water surface. According to
[12] [6], the spatial decaying envelope of water waves can be modeled as

h(x, t) = A(x)cos(x− t) (3)

where A(x) denotes the functional form of the envelope. It should be noted that a decaying
sinusoidal form is considered only for the sake of mathematical convenience. However, the
following analysis is applicable for any spatially decaying periodic wave form. From Eqs. 2
and 3, the warps induced at a pixel x can be derived as

w(x, t) = α∇h(x, t) = α
√

∇A(x)2 +A(x)2 cos(x− t +φ) = α1(x)p(x, t) (4)

where φ(x) = tan−1
(

A(x)
∇A(x)

)
and α1(x) = α

√
∇A(x)2 +A(x). Since the warp induced at

pixel x is dependent on the nature of the flow gradient, intensities corresponding to different
scene points will impinge on a single sensor. This leads to a blurred image g, which is the
average of different skewed versions of the focused observation f, and can be expressed as

g(x) =
1
Te

∫ Te

0
f (x+w(x,τ)) dτ (5)

where Te is the exposure time of the camera. During the exposure time Te, let w1 and w2 be
the set of warps at pixel locations x1 and x2, respectively. Let p1 and p2 be the set of values
contributed by the periodic component p(x, t) for one period at x1 and x2, respectively, and
α1

1 and α1
2 be the respective attenuation constants. Then, assuming that one cycle of the

periodic component has passed through the camera’s field-of-view (FOV), we can conclude
that p1 = p2. This is because although the set of values due to a periodic component can be
different at a particular instant of time, the sets p1 and p2 will be the same when one cycle of
p(x, t) is considered [15]. If w1 and w2 are the set of warps induced at pixels x1 and x2 then

w1 = α1
1 p1,w2 = α1

2 p2 =⇒ w2 = k.w1 (6)

where k =
α1

2
α1

1
. Eq. 6 implies that the set of warps induced by unidirectional attenuated

periodic water waves at any two pixels in the image plane can be related by a scale factor k.
The value of k at a pixel location will depend on the form of the water wave attenuation.

2.1 Deskewing through deblurring
As is evident from the above analysis, the set of transformations at any two pixel locations
can be related by a scale factor. Interestingly, in the literature corresponding to the restora-
tion of blurred images of 3D scenes due to camera motion [11], it is known that the set of
transformations at different pixels induced due to camera motion can be directly related to
scene depth. The nature of blur is space-variant. Hence, if we consider the set of all scale
factors k in our scenario as virtual depth (Vd) (although the scene under consideration is
planar), the blurred observation generated due to decaying unidirectional water waves can
be equivalently generated by a virtual camera motion imaging the scene with depth profile
Vd. The nature of Vd depends on the nature of the water waves causing the blur.

We choose the form of the attenuation to be exponential which is a reasonable assumption
for most practical applications [3] [8]. An exponentially decaying water wave in 2D can be
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completely defined using its amplitude, decay factor (d f ), and decay direction (dd ∈ R2).
We model the virtual depth in terms of the virtual depth parameters (Vdp = (dd,d f )). The
amplitude component of the water wave will act as a common scale factor for the entire
depth map and we absorb it as part of the unknown camera motion, i.e. if the amplitude
is high, the camera motion covers a wider range of poses and vice versa. We establish this
analogy between the transformation space induced due to attenuated water waves and camera
motion in order to pose the problem of deskewing as one of space-variant deblurring. The
unknowns in our deblurring problem are the blur transformation weights (ω) corresponding
to the virtual camera motion, the underlying virtual depth (dp), and the latent image (f).

3 Proposed methodology
In this section, we describe our proposed approach to recover the latent image. The given
blurred observation g can be expressed in terms of the focused observation f as

g = Kf (7)

where K is the blurring operator whose columns consist of the point spread function (PSF)
corresponding to the pixel position to which it is associated with, while g and f denote the
lexicographically ordered versions of the blurred and focused observations, respectively. In
our case, the K matrix can be generated using ω and dp. In Eq. 7, both K and f are unknowns,
which makes the problem of deblurring ill-posed. We propose to solve for the unknowns by
minimizing the following cost function which builds on the relation in Eq. 7 as

E(f̂, d̂p, ω̂) = ∑
δ ∗∈Θ

λδ ∗ ||(δ ∗ f )oT dp
ω −δ ∗g||22 +prior(f,dp,ω). (8)

where T dp
ω indicates the transformation function determined by dp and ω , the operator o rep-

resents space variant convolution by T dp
ω on f and its derivatives (Θ= {∂0,∂x,∂y,∂xx,∂xy,∂yy}),

and λδ ∗ is the associated weight for these terms. Because of the non-convexity of the above
cost function, minimizing E is nontrivial. To address this issue, we split this problem into
three regularized least square forms, one each for the estimation of f, dp, and ω . These in-
dividual problems are then integrated to form an alternating minimization (AM) framework
that solves for the unknowns from a single motion blurred image as explained next.

3.1 Estimation of transformation weights
Within the AM framework, this step yields a refined estimate for ω using the current esti-
mates of dp and f. We modify Eq. 8 to obtain the following optimization problem.

ω̂ = argmin
ω

{
λ ω

Θ0
||foT dp

ω −g||22 + ∑
δ ∗∈Θ−Θ0

λ ω
δ ∗ ||(P(δ ∗f))oT dp

ω −δ ∗g||22 +λω ||ω||1
}

(9)

Here the operator P refers to the prediction operator which predicts the salient edges of the
latent image using bilateral filtering, shock filtering, and gradient magnitude thresholding
[1]. This prediction step enables estimation of ω to be relatively stable against estimation
errors in latent image thus facilitating convergence. λ ω

δ ∗ ,λ
ω
Θ0

are the weights on the respective
terms in the data cost. The transformation weight vector induced by unidirectional cyclic
waves in the image plane is sparse in nature [15]. Hence, we impose an L1 prior on ω .
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By representing the camera motion to be a vector of weights (ω) corresponding to different
poses of the camera, we reduce Eq. 9 as

ω̂ = argmin
ω

{
||Adp

f .ω−bg1 ||22 +λω ||ω||1
}

(10)

where Adp
f is a matrix whose columns consist of lexicographically ordered warped versions

of f and its derivatives (weighted by λ ω
δ ∗ ) corresponding to the poses in ω and known depth

dp, and bg1 is formed by stacking corresponding weighted versions of g.

3.2 Estimation of virtual depth parameters
To estimate dp, given the current estimates of ω and f, we resort to the following formulation.

d̂p = argmin
dp

{
λ dp

Θ0
||foT dp

ω −g||22 +
(

∑
δ ∗∈Θ−Θ0

λ dp
δ ∗ ||(P(δ

∗f))oT dp
ω −δ ∗g||22

)
+λdp ||dp||1

}

(11)
Similar to estimation of ω we have observed that the predicted edges can significantly im-
prove the estimation of depth parameters. Here dp is a vector of weights corresponding to
each virtual depth parameter in the search space. Among all possible values, a unique com-
bination of decaying factor and decaying direction vector will describe the virtual depth. We
impose a sparse prior on dp to arrive at

d̂p = argmin
dp

{
||Cω

f .dp−bg2 ||22 +λdp ||dp||1
}

(12)

Each column in Cω
f is formed by stacking the weighted blurred forms of image f and its

predicted gradients, blurred using the corresponding depth parameter from dp and known
transformation weight ω , and bg2 is formed by stacking corresponding weighted versions of
g. Although only one single value in d̂p is supposed to be nonzero, because of the estimation
errors in the known values of ω and f and the discrete-space approximation for depth param-
eters, we will have more than one entry in d̂p to be nonzero. We treat the depth parameter
corresponding to the centroid of these weights as our refined estimate for dp. We employ
nnLeastR function in SLEP package [7] to solve Eqs. 10 and 12.

3.3 Estimation of latent image
To estimate the latent image from known estimates of ω and dp, we minimize

f̂ = argmin
f

{
||foT dp

ω −g||22 +λrs||Mrs(∂ f−∂g)||22 +λ f ||∇f||0.8
}

(13)

We exclude gradient terms for latent image estimation. Motivated by the works of [4],[5],
we impose a sparsity prior on the gradients of the latent image (L0.8). Along with a global
sparsity prior on the latent image, we include an additional regularization term (with weight
λrs) to suppress ringing artifacts. This local prior is used to enforce the condition that the
gradients of both blurred and latent image should be the same in smooth regions. Mrs is
the weight map highlighting the smooth regions in the image and is found by thresholding
the standard deviation of intensity values in g over a small neighborhood. More details on
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this prior and its effectiveness in suppressing ringing artifacts can be found in [16]. The
regularized least square form of the above problem can be expressed as follows

f̂ = argmin
f

{
||Bdp

ω .f−bg3 ||22 +λ f ||∇f||0.8
}

(14)

where Bdp
ω is formed by stacking the blur matrix from known values of dp and ω with the

weighted gradient operator corresponding to the local prior, while bg3 is formed by stacking
g with its weighted gradients. We solve Eq. 14 using iteratively re-weighted least squares.

3.4 Alternating minimization for latent image estimation
Our main AM framework consist of two sub problems, one meant for the refinement of ω
and the other meant for the refinement of dp. In our first subproblem, we use the current
estimate of dp to estimate ω using Eq. 10. We use this estimated ω along with dp to obtain
an estimate of latent image. We do this iterative refinement of weight function and latent
image until convergence. In the second subproblem, we iterate between depth estimation
using Eq. 12 and latent image estimation to obtain a refined estimate for depth. In our main
AM framework, we alternate between these two subproblems until convergence to obtain
final estimates of dp and ω . Eventually, we perform non-blind deblurring to yield the desired
latent image. The main steps of our scheme are listed in Algorithm 1.

Algorithm 1 Algorithm for deskewing.
Input: Blurred image (g), initial estimates of virtual depth parameters (dp0 ) and latent image

(f0).
Output: Deskewed image.

1: d̂p← dp0 , f̂← f0
2: repeat
3: repeat
4: dp← d̂p, f← f̂, and estimate ω̂ by using dp and f in Eq. 10.
5: ω ← ω̂ and estimate f̂ by using ω , dp in Eq. 14.
6: until convergence of ω̂
7: repeat
8: f← f̂, ω ← ω̂ , and estimate d̂p by using f, ω in Eq. 12.
9: dp← d̂p and estimate f̂ using dp and ω in Eq. 14.

10: until convergence of d̂p
11: until convergence of d̂p and ω̂
12: Non-blind deblurring using final estimates of dp and ω .

3.5 Initialization of virtual depth parameters and latent image
A good initialization scheme is essential for our AM framework. We first estimate the PSFs
from overlapping local patches located all over the image using the state-of-the-art space-
invariant deblurring approach of [21]. Although the image as a whole is space variantly
blurred, we can treat local patches in the image to have space invariant blur since depth
variations are typically smooth. Let ℘ be the set of all estimated PSFs. Because these
estimates can be in error, we subject them all to multiple outlier rejection stages to enable us
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to identify reliable PSFs. In our scenario, the variation of PSFs is smooth and hence in the
first stage of rejection we calculate the entropy for each of the PSFs and compare them with
the mean of entropies of the neighborhood PSFs. If the difference is more than a threshold
(0.25 times the mean of all neighborhood entropies) we declare them as outliers. This scheme
is used by the authors in [22] and we have found it to be effective in our case also. Let ℘1
be the set of all inlier PSFs after the first stage of rejection. Due to the unidirectional nature
of water waves (within a single segment), the PSFs induced at different locations in the
image plane are dominant in one direction. We compute the dominant direction for each
of the PSFs in ℘1 using weighted PCA and build a histogram of orientations. We use the
centroid of the bin corresponding to the peak value of the histogram as an initial estimate
for dd. All the PSFs for which the dominant direction is away from dd (i.e greater than a
particular threshold in the Euclidean sense) are removed from the set ℘1 to obtain a refined
set of PSFs ℘2. The kernels which are along a direction perpendicular to the water flow
and at a particular distance from the origin of the water waves should be the same. We use
this fact to filter the PSFs in ℘2 by comparing the entropy with the neighborhood defined by
dd, resulting in set ℘3. By using weighted PCA on all the PSFs, we project them onto their
respective dominant directions to filter out estimation errors. In ℘3, we consider the kernel
whose length is closer to the median length with direction closest to the dominant direction
as the reference kernel and find the scale of every other kernel. By employing RANSAC
on these scale estimates, we fit an exponential curve to find an initial estimate of the decay
factor (d f ). Assuming the reference PSF as the initial value of the transformation weights
and by using the virtual depth parameters, we solve for an initial estimate of f using Eq. 14.
(Please refer to supplementary material for a visual illustration of refinement of PSFs).

4 Shot detection
It is important to note that the scaling relationship among PSFs at multiple locations holds
true if there exists a single virtual depth map induced by the attenuation of water waves. In
the presence of longer exposures, the parameters of the induced virtual depth map may vary
because of changes in wind direction and/or speed. To overcome this challenge, we capture
a video of long duration and propose a shot detection scheme to select a set of frames that
can be modeled by a single virtual depth map with minimum model fitting error (Er).

For shot detection, we analyze Er for stacks of frames corresponding to different time
windows from the video, and identify an optimal time window over which the water flow
best fits our model. We perform this in a scale-space fashion, in which for each level we
estimate Er for time windows of different length. We start by analyzing small overlapping
time windows all over the video (say level 1). We average the frames in each of these
time windows to generate corresponding blurred images. Using the procedure described for
initialization (section 3.5), we find Er for each blurred image. The error in the exponential
fitting of all inliers from RANSAC, averaged over the total number of inliers is used as Er.
A minimum value of Er represents the best model fitting time window for each level. This
process is repeated for larger time windows until the minimum fitting error for the current
level starts increasing significantly as compared to the previous level. The time window
which gives minimum error among all the levels is chosen as our optimal set of frames.
In practice, we can have multiple non-overlapping stack of frames wherein each group is
governed by a dominant water wave direction and a single exponential factor of attenuation.
In that case, one can chose the non-overlapping stacks having Er below a threshold to yield
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multiple latent image estimates. Empirically we have observed that choosing the smallest
time window to be 1 second gives reliable performance. In our real experiments, we found
that after 2 to 3 levels, the modeling error starts to increase consistently indicating a change in
the wave nature. More details on shot-detection can be found in the supplementary material.

5 Experimental Results
We compare our latent image estimation results with the state-of-the-art space-variant de-
blurring approach [23] along with state-of-the-art deskewing methods [17], [10]. The input
to [17] [10] should be in the form of video, while a single blurred image is used for [23] and
our proposed algorithm. For quantitative analysis, we use peak signal to noise ratio (PSNR),
structure similarity index measure (SSIM) [18], and normalised mutual information (NMI)
[13]. The parameter values used in our experiments can be found in the supplementary ma-
terial. Although, we can have multiple latent image estimates from a single video, we only
show the estimate corresponding to minimum Er.

5.1 Synthetic Examples
We use the model described in [6] to simulate a decaying envelope of the water waves which
is given as h(x, t) = A(x)sin(ωxx+ωyy− t), where A(x) denotes the decaying amplitude
of the sinusoid, ωx and ωy are the spatial frequencies. In all our experiments, the decaying
function is given by A(x) = A0 exp(d f .(dd

T x)). The first column of Fig. 1 shows the ground
truth observations. For the synthetic examples in the first two rows of Fig. 1, we generated
512 skewed observations. In order to synthesize a practical scenario consisting of change in
wind properties, we either changed d f , A0 or dd after the 256th frame. For the wall image,
we changed dd from [1 0]T to [0 1]T , while for the text example we increased the decay factor
from -0.004 to -0.002 after the 256th frame. The value of A0 = 9 was kept constant for these
examples. We use the shot detection procedure described in section 4 to segment the video.
The blurred image produced from one such segment is given as input to our algorithm (Fig. 1
(b)). It can be clearly seen in the highlighted red and green boxes of Fig. 1 (c,d), that both the
state-of-the-art deskewing methods [17] [10] could not completely restore the observations
from skew. The main reason behind the failure of [17] is that the water bases may not have
been able to model the waves adequately, while the failure of [10] can be attributed to poor
performance of their non-rigid registration framework. Fig. 1 (e) shows the failure of the
space-variant deblurring approach of [23], mainly because due to the fact that it does not
handle blur changes induced by depth variations. The last column gives the output of our
method. As can be seen from the highlighted regions, the restored observations are sharper
and are almost free of skew.

5.2 Real Examples
We used laminated textured sheets kept at the bottom of an aquarium. The field-of-view was
kept large enough to witness the effect of wave attenuation in the captured video. The source
of waves is a fan that acts as a wind blower. The shell example in Fig. 1 (third row) was
captured with change in blower speeds to introduce a change in wind amplitude and spatial
frequency. The stones example (Fig. 1, fourth row) was captured by a change in the origin
of waves to synthesize change in wind direction. Both the videos were given as input to our
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shot detection framework to segregate groups of frames that conform to a single virtual depth
map. A group of frames which conform to a single virtual depth map with least fitting error
is given as input to [17] [10], while the average of these frames was given to [23] and our
own method. Since both [17] and [10] do not account for the blur in individual frames, their
deskewed outputs are not sharp (Fig. 1 (c,d)). Fig. 1 (e) shows that [23] also fails to recover a
sharp estimate of the latent image. The results of our proposed approach (Fig. 1 (f)) are closer
to the ground truth (captured in still water) as compared to competing algorithms. Table 1
gives a quantitative analysis for both synthetic and real examples. Clearly, our proposed
approach outperforms other methods in objective evaluation too.

(a) (b) (c) (d) (e) (f)
Figure 1: Synthetic and real experiments. (a) Focused observation, (b) blurred observation,
(c) restored by [17], (d) output of [10], (e) output from [23] and (f) proposed method. First
row: wall. Second row: text. Third row: shell. Fourth row: stones.

Table 1: Quantitative analysis for synthetic and real experiments.

PSNR (in dB) SSIM NMI
Tian [17] Oreifej [10] [23] Algorithm 1 Tian [17] Oreifej [10] [23] Algorithm 1 Tian [17] Oreifej [10] [23] Algorithm 1

Wall 20.9638 22.4273 13.0005 22.8546 0.9994 0.9996 0.9943 0.9997 1.0626 1.0148 0.8994 1.0713
Text 13.5681 13.5679 11.1212 20.8162 0.9975 0.9975 0.9798 0.9997 0.5770 0.5766 0.5290 0.6107
Shell 26.3070 26.6811 23.6328 26.7811 0.9984 0.9983 0.9986 0.9999 0.9760 0.9544 0.9544 0.9820

Stones 23.4497 28.2615 27.0457 28.2815 0.9995 0.9994 0.9993 0.9998 0.9727 1.0248 1.0045 1.0250

We additionally performed outdoor experiments in swimming pool. Here the source of
waves was the breeze as well the flow due to water circulation. Since we do not have control
over natural breeze, we restrict ourselves to qualitative comparisons. It can be seen from Fig.
2 that the results of our proposed method for both shell as well as band examples are sharper
when compared to the state-of-the-art (see highlighted red and green boxes).
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(a) (b) (c) (d) (e)

Figure 2: Real outdoor experiment. (a) Blurred image. Output of: (b) [17], (c) [10], (d) [24],
and (e) proposed method. First row: shell. Second row: band.

6 Conclusions

We proposed a deskewing technique to restore planar scenes distorted by water waves. Given
a video, we proposed a shot detection framework to segment it into groups of frames that
conform to a virtual depth map. The frames within a segment are governed by unidirectional
attenuated waves. We established that, within a segment, the blur induced at different spatial
locations of the image, can be expressed as scaled versions of each other. The notion of
a virtual depth map enabled us to pose the problem of deskewing as one of space-variant
deblurring. An alternating minimization framework was proposed to solve for the latent
image wherein the virtual depth parameters and transformations induced in the image plane
were obtained as by-products. Our method outperforms the state-of-the-art as is evident from
our comparisons with competing methods.
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