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Abstract

Learning of convolutional filters in deep neural networks proves high efficiency to
provide sparse representations for the purpose of image recognition. The computational
cost of these networks can be alleviated by focusing on separable filters to reduce the
number of learning parameters. Autoencoders are a family of powerful deep networks to
build scalable generative models for automatic feature learning. Inspired by their stacked
hierarchy, we introduce Fisher convolutional autoencoders to learn separable filters in a
distributed architecture. These novel overcomplete autoencoders employ discriminant
analysis to impose the highest possible distinction among texture classes whilst holds
the minimum separation within each individual class. A distributed network of stacked
Fisher autoencoders learns banks of separable filters in parallel and makes an ensemble
of deep convolutional features with higher separability for a better classification. This
network automatically adjusts depth of each stack with respect to the capability of its
correspondent separable filter on extracting higher order convolutional features for the
dataset under study. We conduct our experiments on several publicly available datasets
varying in number of classes and quality of samples by using a standard implementation.
Our results confirm the supremacy of our method on improving the precision of texture
understanding in comparison with the recently published benchmarks.

1 Introduction
Autoencoders introduce a powerful tool for hierarchical feature learning. An autoencoder is
a neural network trained to prioritize useful aspects of the input data. They generally were
used for dimensionality reduction or feature learning but recently, their theoretical links with
latent variable models connect them to the generative modeling [15].

In contrast to regularized autoencoders, the variational [16] and generative stochastic
networks [1] learn high capacity, overcomplete encodings of the input without regularization.
Stacked convolutional autoencoders are also trained using online gradient descent without
additional regularization terms and properly scale to the high-dimensional inputs [22].

Deep generative models, such as Restricted Boltzmann Machines (RBM) [13], Deep
Belief Networks (DBNs) [14] and Deep Boltzmann Machines (DBMs) [24] were generally
trained by MCMC-based algorithms [24]. Recently, they learn by direct backpropagation
and avoid the difficulties of MCMC training.
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Figure 1: A Fisher convolutional autoencoder projects its input X to higher dimensions,
convolves them and then, backprojects to the original dimensions. It tries to expose higher
distinction among classes in the output Y compared to the input X.

For example, the variational autoencoders [16] or importance weighted autoencoders [3]
employ a recognition network for the prediction of posterior distribution of latent variables.
Generative adversarial networks [12] use an adversarial training procedure to directly shape
the output distribution of the network via backpropagation [20].

In this paper, we introduce Fisher convolutional autoencoders which are arranged in a
distributed network of stacks to train banks of separable filters in parallel for the purpose of
texture recognition.

The first contribution of our framework is proposing of a novel discriminant analysis
which holds higher class separability in a projected space spanned by the number of texture
classes in dataset at hand. Our second contribution is parallel learning of separable filters
by distributed discriminant analysis [30]. The third contribution of our method is automatic
depth adjustment for each individual stack with respect to the distinction power of its specific
separable filter.

The rest of paper is organized as follows. We present our learning framework in Section 2
followed by our experiments and discussion in Section 3 and finally, conclude in Section 4.
We also provide two appendices in supplementary material to formulate the mathematics of
proposed learning framework in detail.

2 Learning Framework
Inspired by the functionality of stacked overcomplete autoencoders [32], we propose our
framework for the learning of separable filters by Fisher convolutional autoencoders. We
stack these overcomplete autoencoders in several layers to learn each of individual separable
filters and then, arrange all the stacks in a network to provide the final convolutional feature
set for texture classification.

2.1 Stacked Fisher Convolutional Autoencoders

An overcomplete autoencoder is a regularized autoencoder trying to reconstruct noisy inputs
based on stacking layers which are trained locally to denoise the corrupted versions of their
inputs [32]. In the Fisher convolutional autoencoder, we try to employ the same reasoning
but in contrast to the overcomplete autoencoder which aims at minimizing the dissimilarity
between its input and output, our objective is to reconstruct an output with higher distinction
by maximizing the separability between its various classes and minimizing the scatterings in
each individual ones.
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Figure 2: Stacked Fisher convolutional autoencoders are back to back autoencoders which
the rectified output of each autoencoder feeds the input of the next one as Xt+1 = g(Yt) until
no additional class separation can be imposed to Yt compared to the input Xt .

As illustrated in Figure 1, the Fisher Convolutional Autoencoder (FACen) includes three
consecutive modules called projection, convolution and backprojection. An input X∈Rh×w×d

(d color components of height h and width w) is presented to a projection module A ∈ Rd×c

which maps it to P = X×A such that P ∈ Rh×w×c and c is the number of texture classes in
dataset under study. Then, the projection set P convolves by filter set F ∈ Rr×r×c (c texture
filters of size r× r) to provide Q = P ∗F that Q ∈ Rh×w×c is set of convolutional features.
Finally, the feature set Q moves towards a backprojection unit B ∈ Rc×d to give the output
of autoencoder Y = Q×B which Y ∈ Rh×w×d is of the same dimensions as the input X.

Since deep autoencoders generally benefit from depth like feedforward networks [15],
we stack them as presented in Figure 2. The Fisher convolutional autoencoders in a stack
are connected to each other by applying an activation function to transfer features between
deep layers. We employ softsign function g(x) = x

1+|x| to rectify the output Y because this
formulation shows robustness to the initialization and gentle nonlinearity in comparison with
other common activation functions [11].

Considering a set of filters F = {F1,F2, . . . ,F|F |} that we intend to train within each
individual stack of Fisher convolutional autoencoders, a sample network of |F| distributed
stacks of maximum N layers, is depicted in Figure 3. Each stack trains an individual filter
of set F independently and its depth increases until no meaningful improvement in the class
separation is gained.

After training of all separable filters of set F , We ensemble the convolutional features of
each stack to form YF = cat(Y1N1 , . . . ,YkNk , . . . ,Y|F |N|F |) and employ dictionary learning
(improved Fisher vectors) to feed our classifier of choice (linear support vector machine) and
recognize the category of a test sample in the dataset under study.

2.2 Projection/Backprojection
In this section, we further elaborate projection/backprojection modules shown in Figure 1.
Suppose that the input X is in depth d that contains c texture classes such that c > d. By
projection, we mean supervised mapping to a high-dimensional space spanned by the number
of classes. Considering Fisher criterion [2], we aim at minimizing the ratio of inter/intra class
scatterings SwA and SbA by figuring out a projection matrix A ∈ Rd×c such that

argminH(A) =
tr
(
A SwA AT

)

tr
(
A SbA AT

) +‖I−A AT‖2 (1)

Here, tr(.) is the trace operator, I indicates the identity matrix and ‖.‖2 corresponds to
the L2-norm.
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Figure 3: A network of stacked Fisher convolutional autoencoders consists of |F| stacks of
maximum N autoencoders which are automatically arranged in different depths with respect
to the distinction power of each individual filter of set F .

The first term of Equation 1 tries to make the highest possible separability among classes.
The second term is a regularization term to impose orthogonality into the projection matrix.
To make Equation 1 dimensionally consistent, the scattering set SA = {SwA,SbA} should
belong to Rc×c but it is currently aligned with the depth of X which holds SA ∈ Rd×d . This
means that we are not able to employ classic discriminant analysis [10] to solve Equation 1
because it is no longer a dimension reduction problem. In contrary, this tries to increase the
depth of input (d) by projection to the higher dimensions (c > d).

Our solution for this inconsistency is redefinition of the scatterings based on the number
of classes (c) rather than the depth of input (d). Starting from a conventional scattering set
SB ∈ Rd×d , the within/between-class scatterings {SwB,SbB} are defined as

SwB =
c

∑
j=1

∑
xi∈C j

(xi−µ j)(xi−µ j)
T (2)

SbB =
c

∑
j=1

(µ j− µ̄)(µ j− µ̄)T (3)

where xi, c, µ j and µ̄ are the input sample, number of classes, mean over class C j and mean
over all dataset, respectively.

Now, we proceed to define our proposed scattering set SA ∈ Rc×c by assuming SwA as a
square matrix of size c× c with all zeros except main diagonal entries such that

SwA( j, j) = tr
(

∑
xi∈C j

(xi−µ j)(xi−µ j)
T
)
∀ j ∈ [1,c] (4)

Then we introduce a non-singular matrix ΓΓΓwww as

vec(ΓΓΓwww) = I⊗ (−SwA)−ST
wB⊗ I (5)
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Algorithm 1 Supervised Projection
Input: input X with n pixels in depth d
Output: optimal projection matrix A ∈ Rd×c

1. Compute SwA (Eq.4) and SbA (Eq.6) for X ∈ Rn×d

2. Set A(0) as c largest eigenvalues of S−1
wA SbA

3. Optimize Equation 1 to compute A

Algorithm 2 Supervised Backprojection
Input: input Q with n convolutional vectors in depth c
Output: optimal backprojection matrix B ∈ Rc×d

1. Compute SwB (Eq.2) and SbB (Eq.3) for Q ∈ Rn×c

2. Set B(0) as d largest eigenvalues of S−1
wB SbB

3. Optimize Equation 7 to compute B

which vec(.) is vectorization operator. Equation 5 is a closed form solution of Sylvester
equation [18] for ΓΓΓwww by using Kronecker tensor trick or generalized eigen decomposition.
Setting ΓΓΓbbb = ΓΓΓwww implies that

SbA = ΓΓΓbbb SbB ΓΓΓ−1
bbb (6)

In our supplementary material, we formulate above equations in detail and prove that
set of eigenvectors corresponding to the largest c eigenvalues of S−1

wA SbA is a solution for
Equation 1. Although this solution can be considered as an sub-optimal projection matrix,
we employ it as a starting point A(0) to solve Equation 1. In general, Fisher criterion is the
trace-of-quotient which can be solved by generalized eigenvalue method [2] but Equation 1
is the quotient-of-trace that requires different solution [8].

We also work out the closed form derivatives of Equation 1 in supplementary material.
With above ingredients at hand, we employ nonlinear least squares minimization with trust
region reflective and use the built-in implementation of Matlab optimization toolbox [7] to
solve Equation 1. Algorithm 1 summarizes the computing of optimal projection A.

The story for backprojection matrix B ∈ Rc×d is the same. Here, we solve a minimizing
problem as follows

argminQ(B) = tr
(
BT SwB B

)

tr
(
BT SbB B

) +‖I−BT B‖2 (7)

This time, we initialize B(0) by the largest d eigenvalues of S−1
wB SbB of Q in Figure 1 and

follow the Algorithm 2 to compute optimal backprojection B by the same nonlinear least
squares minimization method used for A.

It is worth mentioning that the convolutional set Q is in depth c and hence, we have
SB(Q) ∈ Rc×c. This is in contrast to the input set X of depth d implied SB(X) ∈ Rd×d .
It is the key difference of formulations for the projection (Equation 1) and backprojection
(Equation 7) modules, although they are both solved by the same algorithm.
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Algorithm 3 Optimization of Separable Filters
Input: input X, projection Ak and backprojection Bk
Output: optimal vertical vk and horizontal hk vectors
for k = 1 to |F | do

1. Set Fk
(0) = Fk (Equation 8)

2. Compute Swk (Equation 2), Sbk (Equation 3) for Yk
3. Optimize Equation 11 for vk and hk

end for

2.3 Convolutional Separable Filters
We again consider the set of filters F = {F1,F2, . . . ,F|F |} such that the filter Fk is the

kth filter of size r× r generated by multiplication of two vertical vk ∈ Rr×1 and horizontal
hk ∈ R1×r vectors as follows

Fk = vk×hk (8)

Computing of {vk,hk} form Fk is straightforward [28]. Suppose that

[U,S,V] = svd(Fk) (9)

then the vertical and horizontal vectors to separate Fk are defined as

vk = U(:,1)×
√

S
(1,1)

hk = VT
(:,1)×

√
S
(1,1) (10)

Here, our aim is finding {vk,hk} which impose the maximum possible class separation
in the output of our stacked Fisher convolutional autoencoders. Considering the kth stack
which corresponds to Fk, projecting the input X with Ak creates latent projected vector Pk.
We move forward by convolving with the filter Fk and generate latent convolutional features
Qk. Then, Qk multiplies by the backprojection matrix Bk to give Yk.

To proceed on the optimization, we fix {Ak,Bk} and try to maximize the separation
whilst minimize the scattering of texture classes by optimizing a least square minimization
problem for the set Sk = {Swk,Sbk} of Yk (Equations 2-3). Our proposed formulation is

argminRF (vk,hk) =(
1− log

[
tr(Swk)

])2

+

(
1− log

[
tr(Sbk)

])−2

+

(
1− log

[
tr(Swk)

tr(Sbk)

])2

(11)

which the first two terms are smoothing functions to impose such a symmetry to RF that
avoids biases towards majority/minority texture classes, respectively. Here, the logarithm
function improves the overall convergence rate. The solution of Equation 11 is a set of
optimal vectors {vk,hk} that finally provides the optimal separable convolutional filter Fk.
To solve Equation 11, we employ least squares minimization with Levenberg-Marquardt
algorithm implemented in Matlab optimization toolbox [7]. We wrap up this optimization
procedure in Algorithm 3.
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3 Experiments

In our experiments, we employ three well-known local texture descriptors (LM, MR, Schmid)
and train them in our proposed learning framework for five publicly available texture datasets
(UIUC, KTH-TIPS2-a, KTH-TIPS2-b, FMD, DTD). We compare our results with three
state-of-the-art performances in literature [6] which are Improved Fisher Vector on dense
SIFT [4] besides DeCAF(FC6) [9] and VGG-VD [27] pre-trained on ILSVRC [23] dataset.
For implementation, we develop our method inside Oxford Visual Geometry Group’s code
for texture understanding [5] and report mean accuracy of recognition averaged over standard
number of splits according to the evaluation protocols.

3.1 Texture Filters

The separable filters are initialized by three banks of texture filter including 99 filters with
size 49×49. The first filter bank is Leung-Malik (LM) [19] with 36 first/second derivatives
of Gaussian filters at three scales {

√
2,2,2

√
2} and six orientations {π

6 ,
π
3 . . . ,π}, eight LoG

and four Gaussian filters at scales {
√

2,2,2
√

2,4}. The second filter bank is Maximum
Response (MR) [31] consisting of 36 filters at three scales {1,2,4} and six orientations
added to two isotropic Gaussian and LoG filters. The third filter bank is Schmid (S) [25] that
contains 13 rotationally invariant filters with σ ∈ {2,4,6,8,10} and τ ∈ {1,2,3,4}.

3.2 Texture Datasets

We pick five texture datasets with enough room to show the advantage of our method over
their state-of-the-art performances in literature. UIUC texture database [17] contains 1000
images (40 samples, 25 classes) in grayscale. KTH-TIPS2-a and KTH-TIPS2-b [21] stand
for Textures under varying Illumination, Pose and Scale which the latter consists of 4572
images (4 samples, 108 images per sample and 11 categories) and the former uses only 72
images for 4 out of 44 samples. We follow [29] for evaluation which images on one sample
are used to train and the other three samples to test. Flicker Material Dataset (FMD) [26]
includes 1000 images (100 per category, 10 categories) manually selected from the Flickr.
Describable Texture Dataset (DTD) [5] contains 5640 annotated texture images with one or
more adjectives in a vocabulary of 47 English words (120 representative per attribute). There
are 10 preset splits into equally-sized training, validation and test sets.

3.3 Experimental Setup

For the experiments, we follow [5] by computing local image descriptors and encoding them
into a visual dictionary. The current state-of-the-art descriptors are 128-dimensional Dense
SIFT features (DSIFT) computed for bins of size 6× 6 pixels at scales {1,

√
2

2 , 1
2 ,
√

2
4 , 1

4}.
The descriptors are soft quantized by Gaussian Mixture Model (GMM) and normalized to
generate Improved Fisher Vectors (IFV). After normalization, we train a standard linear
SVM solver and use the validation set to find its regularization parameter. We replace our
descriptors (Ours) with DSIFT and proceed the above pipeline for texture recognition.
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3.4 Results & Discussion

We report the results in four tables comparing our performance on texture recognition to
DSIFT in Table 1, DeCAF in Table 2, VGG in Table 3 and finally, summarizing the best
outcomes in Table 4. Bold values are the best performances on each experiment.

Table 1 represents DSIFT features compared to our descriptors (Proposed). It is clear
that, we outperform in all texture datasets except UIUC. It is due to the fact that this is a
grayscale dataset and hence, our paradigm cannot take the advantage of orthogonality in
standard color spaces for imposing a powerful separation among texture classes.

Dataset DSIFT [4] Proposed
UIUC 97.2±0.8 90.1±0.8
KTH-a 82.5±5.3 85.5±4.9
KTH-b 69.3±0.9 70.1±0.7
FMD 58.1±1.7 71.8±2.2
DTD 58.6±2.0 59.1±1.3

Table 1: Mean accuracy of texture recognition for DSIFT and our descriptors.

In Tables 2-3, we compare performances of deep features (DeCAF, VGG) and their joints
with DSIFT and our descriptors. It is worth mentioning that both of these deep models were
pre-trained on ILSVRC [23] dataset with large number of samples and object classes which
eventually benefits them by better generalization on larger texture datasets.

Dataset DeCAF [5] DSIFT+DeCAF [4] Proposed+DeCAF
UIUC 94.2±1.1 99.0±0.5 96.1±0.7
KTH-a 78.4±2.0 84.7±1.5 86.0±2.3
KTH-b 70.7±1.6 76.2±3.1 82.3±0.9
FMD 60.7±2.0 65.5±1.3 84.3±2.8
DTD 54.8±0.9 66.7±0.9 80.6±2.3

Table 2: Mean accuracy of texture recognition for DeCAF (pre-trained on ILSVRC).

Dataset VGG [6] DSIFT+VGG [4] Proposed+VGG
UIUC 97.0±0.7 99.3±0.4 96.3±0.1
KTH-a 77.8±1.8 83.6±1.7 82.2±7.9
KTH-b 75.4±1.5 81.1±2.4 80.5±0.7
FMD 77.4±1.8 82.4±1.5 85.7±3.0
DTD 62.9±0.8 74.7±1.0 85.9±1.4

Table 3: Mean accuracy of texture recognition for VGG (pre-trained on ILSVRC).

Again, we outperform on all datasets except UIUC in spite of the great improvements
compared to the Table 1. On KTH-TIPS2-a and KTH-TIPS2-b, our joint performance with
DeCAF is better than VGG. The reason is quality of texture images in KTH datasets captured
on controlled lighting conditions and fix distances [21] that generates more homogeneous
features for each individual class of textures.
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In contrast, our combination with VGG performs better than DeCAF on FMD and DTD
datasets because here, the texture images were gathered from web with a huge variety in
lighting and capturing conditions. It seems that VGG generalizes better for uncontrolled
conditions due to its higher depth in comparison with the DeCAF deep architecture.

Table 4 summarizes the current state-of-the-arts (SOA) and our best results from above
tables. It confirms that our stacked Fisher convolutional autoencoders is quite successful
on imposing distinction among highly-correlated texture patterns especially the ones which
were captured in uncontrolled conditions.

Dataset SOA [4] Ours
UIUC 99.3±0.4 96.3±0.1
KTH-a 84.7±1.5 86.0±2.3
KTH-b 81.1±2.4 82.3±0.9
FMD 82.4±1.5 85.7±3.0
DTD 74.7±1.0 85.9±1.4

Table 4: Mean accuracy of texture recognition for others (SOA) and our framework (Ours).

Figure 4 illustrates some examples of initial filters and their corresponding separable ones
learned by our proposed framework. The first column includes classic texture descriptors
from mentioned filter banks. and the rest are trained separable filters for each datasets.

It can be seen that for some filters, the changes across various datasets is smaller than the
others. This means that they are responsible to extract common features in texture patterns.
The filters with considerable deformations usually connect to deeper stacks of autoencoders
that capture higher order representations. For initial symmetric filters, the trained outputs
are not necessarily symmetric everywhere, although they preserve the symmetry quite well
in some datasets.

4 Conclusion
The supremacy of deep convolutional neural networks for automatic feature learning leads
us to introduce a novel family of overcomplete autoencoders for the training of separable
texture filters. Our stacked Fisher convolutional autoencoders employ a modified form of
linear discriminant analysis to impose higher distinction among classes in the dataset under
study. This lets us to arrange parallel stacks of them to train each individual separable filter
independently. They also expand in different depths based on the power of corresponding
filters to extract better sparse representations. Our experiments conducted for several texture
datasets over a standard platform prove the advantage of our learning framework over other
deep local descriptors in literature.
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(a) (b) (c) (d) (e) (f)

Figure 4: Examples of (a) initial filters and their corresponding separable filters learned for
(b) UIUC; (c) KTH-TIPS2-a; (d) KTH-TIPS2-b; (e) FMD; (f) DTD datasets.
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