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Abstract

Image pyramid is a common strategy in detecting objects with different scales in an
image. The computation of features at every scale of a finely-sampled image pyramid is
the computational bottleneck of many modern face detectors. To deal with this problem,
we propose a multi-scale fully convolutional network framework for face detection. In
our detector, face models at different scales are trained end-to-end and they share the
same convolutional feature maps. During testing, only images at octave-spaced scale
intervals need to be processed by our detector. And faces of different scales between two
consecutive octaves can be detected by multi-scale models in our system. This makes
our detector very efficient and can run about 100 FPS on a GPU for VGA images. Mean-
while, our detector shows superior performance over most of state-of-the-art ones on
three challenging benchmarks, including FDDB, AFW, and PASCAL faces.

1 Introduction

Face detection is an active research topic in computer vision and has many applications
including facial expression recognition, face recognition, face parsing and human computer
interface (HCI), just to name a few. During the past degrade, great successes have been
made due to the availability of large amount of training data in unconstrained conditions
and the development of robust computer vision algorithms, e.g., boosting-based methods,
deformable part based models (DPM) and convolutional neural networks (CNN). A thorough
review can be found in the survey [30].

Generally speaking, face detection is usually addressed by sliding window based meth-
ods. Most detection systems only train one scale (single-view or multi-view) model. To
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detect faces at different scales in an image, an image pyramid needs to build via repeated
smoothing and sub-sampling the original image, which is shown in Fig. 1 (A). And then the
corresponding feature (e.g. HOG, LBP) pyramid is built by computing a specific feature
from each level of the image pyramid. The scale sampling in an image pyramid is deter-
mined by a parameter K that defines the number of levels in an octave. That is, K is the
number of levels that is required to go down in the pyramid to get to a feature map computed
at twice the resolution of another one. In Fig. 1 (A), an image with red border is an octave
and an image with baby blue border is the finely-sampled one. In practice, K is usually set as
3 —10. With a typical setting K = 7, there are about 40 levels of a VGA (640 x 480) image
pyramid. Therefore, it is a burden to compute features at every level of an image pyramid,
which is the bottleneck of many modern face detectors. To address this problem, Dollar et
al. [3] argue that features on a finely-sampled pyramid can be approximated by features com-
puted at octave-spaced scale intervals, rather than being computed explicitly. With such an
approximation, the detector [28] can run at real-time frame rate on typical VGA size images,
but with slight loss in the detection accuracy.

Considering the efficiency, we propose a multi-scale fully convolutional network (MS-
FCN) framework for face detection. In our MS-FCN model, K face models with different
scales are trained end-to-end. More importantly, these models share the same full-image
convolutional features. During testing, only images at octave-spaced scale intervals (images
with red border in Fig. 1 (A)) need to be processed by our detector. And faces of different
scales between two consecutive octaves can be dealt with K face models at different scales in
our system. The above strategies make our detector very efficient, which can run about 100
FPS on a GPU (Nvidia GTX 980) for VGA images. Meanwhile, our detector can achieve
state-of-the-art detection performance on three public face detection benchmarks, including
FDDB, AFW, and PASCAL faces.

The remainder of this paper is organized as follows. In Sec. 2, we briefly review the re-
lated work. In Sec. 3, we give a detailed description of our MS-FCN face detector, including
the network architecture, training strategies and parameter settings. Experimental results and
comparison with other state-of-the-art approaches are presented in Sec. 4. And we conclude
our work in Sec. 5.

2 Related work

During the past decade, many face detection systems have been proposed, such as [19] [24].
Among these methods, the boosting cascade framework [24] proposed by Viola and Jones
(VJ) is a milestone work in face detection. Thanks to simple Haar features and the inte-
gral image trick, the computation cost of feature pyramids is relatively small. And with the
attentional cascade structure, the VJ framework can reject more negative sample at early
stages. Therefore, the V] framework shows its superior advantage in speed, and becomes
the most popular method in face detection. However, the simple Haar features have limited
representation, which leads to poor performances of V] detectors in uncontrolled environ-
ments, due to the large appearance variations caused by the unconstrained illumination, sever
occlusion, highly exaggerated expressions and so on. To enrich the capacity of feature repre-
sentation, HOG [2], SURF [15] and other complicated features are exploited, which improve
the detection accuracy. However, most above detection systems only train one scale model
and feature pyramids have to be built, which increases the computational costs drastically,
especially when complicated features are used.
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Figure 1: The pipeline of the proposed MS-FCN detector system. (A) Only images at octave-
spaced scale intervals in the image pyramid (images with red border) are fed to the network;
(B) After several layers of convolution, output the shared convolutional (conv) feature maps;
(C) Multi-scale fully connected layers slide on the conv feature maps and output classifica-
tion (cls) and regression (reg) results; (D) Convert cls and reg outputs to bounding boxes,
and apply non-maximum suppression (NMS) to all bounding boxes over the threshold and
get the final detection results.

DPM-based methods [25] [17] [26] are another stream for face detection. DPM models
learn root filters, part filters and their spatial relationships via latent support vector machine
(SVM). Therefore, DPM models are very robust to occlusion. [25] [17] [26] demonstrate
state-of-the-art performance of DPM models. However, building feature pyramids makes
DPM-based methods computationally intensive.

There is a long history of deploying neural network for the task of face detection. As
early as in 1994, Vaillant et al. [23] propose a face detection algorithm based on neural
network. And in 1998, Rowley et al. [19] present a retinally connected neural network-
based face detection system to detect upright frontal face in image pyramid. And they fuse
multiple networks to improve performance. Obviously, it is hard to know the performance of
these ancient detectors on today’s face detection benchmarks. However, they are still worth
reviewing, as there are many similarities in design with modern CNN-based face detection
systems.

Recently, with the break-through results of CNNs for image classification [13] and object
detection [7] [6] [18], deep CNN-based face detectors [4] [14] [29] [8] have been proposed.
Inspired by the boosting-based algorithms, Li et al. [14] propose a cascaded architecture
called CascadeCNN for real-world face detection. Two lower-resolution models are used to
quickly reject most false detection windows and higher resolution models are applied to ver-
ify the detections carefully. Although multi-resolution models are used in CascadeCNN, the
insight is totaly different. Our MS-FCN models use multi-scale models to deal with different
sizes of faces while CascadeCNN intends to reject majority of non-face windows in images.
What is more, every stage of CascadeCNN needs to be designed carefully and is trained
separately, while our MS-FCN models are simpler and can be trained end-to-end. Yang et
al. [29] demonstrate that facial attribute CNN models can be applied to find face proposals
and the proposed windows can be further processed by an AlexNet-like CNN model. The
Faceness-Net [29] show slightly lower performance and less efficiency than our MS-FCN
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Figure 2: An example in our training dataset. The region with a red rectangle is labeled
as positive because its IoU overlap with one ground-truth box is higher than the pre-set
threshold.

model. In [4], Farfade et al. introduce deep dense face detector (DDFD), which fine-tunes
the pre-trained AlexNet [13] is able to detect faces in a wide range of orientations. In [8],
Huang et al. propose an end-to-end FCN framework called DenseBox for face detection.
The performance of DenseBox [29] is slightly better than our MS-FCN model, however,
DenseBox is trained with more labeled data and facial landmark information. DDFD and
DenseBox only train one single scale model and have to build more levels of image pyramids
during testing. Moreover, DDFD, Faceness-Net and DenseBox have wider and deeper con-
volution layers compared to the architecture of CNN used in our model. Therefore, DDFD,
Faceness-Net and DenseBox are inefficient compared with our method.

3 MS-FCN Model

The whole detection system of our MS-FCN model is illustrated in Fig. 1. Given an image
of any size, our detection system simultaneously outputs multiple predicted bounding boxes,
each with a class confidence. In more detail, an octave of the image pyramids is taken as the
input (Fig. 1 (A)) and passed through the shared convolutional (conv) layers and the conv
feature maps are output (Fig. 1 (B)). Every scale face model slides on the feature maps and
we get the regression (reg) and classification (cls) outputs (Fig. 1 (C)). Finally, we convert the
reg and cls outputs to bounding box with score, apply non-maximum suppression (NMS) to
those boxes whose confidence is above the predefined threshold and get the detection results
(Fig. 1 (D)). In the following, we give a detailed description on how to train our multi-scale
face detector.

3.1 Data Preparation

Enough training data is very important for good performance of CNN model. To train
our MS-FCN face detector, we use the Annotated Facial Landmarks in the Wild (AFLW)
database [12] to generate positive examples. The AFLW database contains 25,993 face
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Figure 3: The architecture of our MS-FCN network. In the notation str(n, s, k), str represents
the layer name and n,s,k mean the number of filters and the filter size and the stride. Our
multi-scale face models share the same conv feature maps from C1 to C5. K models with
different spatial windows w; slide on the shared C5 feature maps and are followed by two
sibling fully-connected layers, a cls layer and a reg layer.

annotations in 21,997 images collected from Flickr. This unconstrained database includes
many faces with large variations in pose, expression, ethnicity, age, illumination, etc.

If the network takes a whole image as the input for training, it would spend most com-
putational time in convolving on background. Obviously, this is an unwise strategy. To
accelerate the training process, we crop large patches containing faces and sufficient back-
ground information for training. A patch is cropped and resized to 160 x 160 with a face in
the center that has roughly specific height #;, where #; is the template size of the k-th scale
model. And any face labeled in the AFLW dataset is cropped K times. After patches have
been cropped, they are randomly sampled, horizontally flipped with probability 0.5 and ar-
ranged together to form a mosaic of faces, as shown in Fig. 2. This makes our model "see"
more faces at one time during training and the diversity of faces leads to more steady training
process.

For training MS-FCN, we assign a binary label (of being a face or not) to each spatial
region. A region that has an intersection of union (IoU) overlap higher than 0.65 with any
ground-truth box will be assigned a positive label. As shown in Fig. 2, regions with red
rectangles are labeled as positive. A region will be assigned a negative label if its IoU ratio is
lower than 0.4 for all ground-truth boxes. Those regions that are neither positive nor negative
are ignored and will not contribute to the training objective.

3.2 Architecture

There are a few outstanding architectures like AlexNex [13] and VGGNet [21] which achieve
top performance on image classification. These architectures are directly used in DDFD [4],
Faceness-Net [29] and DenseBox [8] and have obtained excellent detection results. However,
these models are computation-intensive and lead to inefficiency of detector. Rather than
using these architectures which are designed for general image classification, we argue that
we are able to use a tiny network for specific object detection (such as face) and lead to
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excellent performance.

Fig. 3 illustrates the architecture of our MS-FCN network. Inspired by [21], all filter
sizes are 3 x 3. At the bottom of the network, there are 5 convolution layers which output
the shared feature maps. Following that, there are K mini-networks to deal with faces at
different scales between two consecutive octaves. Each mini-network contains one fully
connected layer with filter size w; X w; and two sibling fully-connected layers (reg and cls)
with filter size 1 x 1. The K mini-networks operate in a sliding-window fashion, and the
fully-connected layers are shared across all spatial locations.

From Fig. 3, we can also see that the number of filters in each layer is small, which re-
duces the computation burden. Moreover, there are no pooling layers. Instead a convolution
layer with a stride of 2 is used in the first 3 layers inspired by the work in [22]. This also
saves the computation and memory and increase the efficiency. In Sec. 4, we demonstrate
that our detector can achieve the top performance on public face detection benchmarks with
this tiny architecture of CNN.

In our current implementation, the MS-FCN contains K = 3 scale models. The template
sizes are t;, € {40,56,72} for different scales. Because the size of convolutional feature map
is one eighth of the original image, that is, the fully-connected window size is wy = L%tkj.
And we can get the spatial size w; € {5,7,9}. In one octave, we only scan faces with
height between 40 ~ 72 pixels and faces larger than 72 can be detected at the following
octaves. There are no finely-sampled images between two octaves. Therefore, we do not
need to compute the features of finely-sampled images, which contributes the efficiency of
our detector.

3.3 Multi-Scale Multi-Task Training

As introduced in Sec. 3.2, the k-th network has two sibling output layers, cls and reg. The
first cls layer produces the confidence score yy; of being a target object. That is, yy; 1s the
predicted probability of wy * wy spatial region centered at pixel i in the shared conv feature
maps. Given the ground truth label y}; € {0,1}, the classification loss is the softmax loss of
two classes and can be defined as:

Leis(Vkis Vi) = Yig1og (i) + (1 —yi;) log(1 — yxi) (1)

The second reg layer of our k-th network outputs the 4 parameterized coordinates of
the predicted bounding box di; = {d,dy,d,,,ds }1i. And we represent the ground-truth box
di; = {d;,d5,d,,,d}, }1; associated with the k-th spatial region centered at pixel i. Then, we
utilize the regression loss proposed in [6] which is formulated as follows:

Lloc<dki7 d;cki) = Z SIIIOO'[hL1 (d;< — dj)ki 2)
J€{x.yw,h}

where

3)

smoothy, (x) =

0.5x> if ||lx|| <1
||x|| — 0.5 otherwise

1s a robust L loss that is less sensitive to outliers than L, loss.
With these definitions, we can minimize the following multi-scale multi-task loss L at
each pixel 7 in the shared conv feature maps to jointly train for classification and bounding-
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box regression:

y17 L ykwykz +A'yleloc(dkndkl)) 4)

HMN

where y; = {y1;,...,yki} and d; = {d\;,...,dk;} denote the K predicted labels and bounding
boxes located at the i-th pixel, respectively. ¥, balances the importance of models at different
scales. 7 1s set as 1, which means that all models show the same importance to us. The term
Vi:Lioc(di,d};) means the regression loss is activated only for the positive region (y;; = 1)
and is disabled otherwise (y;; = 0). For background regions, there is no notion of a ground-
truth bounding box and hence L, is ignored. A is the loss-balancing parameter and is set to
5, which means that we bias towards better box locations.

3.4 Optimization

As seen in Fig. 3, MS-FCN is naturally a fully-convolutional network [16], and can be trained
end-to-end by back-propagation and stochastic gradient descent (SGD). The sampling strate-
gy from [6] [18] can be applied to train our network. Each mini-batch contains many positive
and negative examples that are sampled from a single image, shown in Fig. 2. There are K
models in our system, and we keep the same number of training examples of different scales.
The negative samples dominate in all samples, which will contribute to biased prediction to-
wards negative if all of them are used to compute the loss function of a mini-batch. To avoid
this degradation, we keep the sampled positive and negative regions at a ratio of 1 : 1. And
we use mini-batches of size R = 512 for each scale. Hard negative example mining strategy
in DenseBox [8] is also utilized to make training more efficient.

The weights of the filters of all layers are initialized by randomly drawing from a zero-
mean Gaussian distribution with standard deviation 0.01. Biases were initialised to 0.1.
The learning rate is initially set to 0.01 and then reduced by factor of 10 after every 100k
mini-batches. And the learning was stopped after 300k iterations. We also use a momen-
tum coefficient of 0.9 and a weight decay factor of 0.0005. Our system is implemented in
Caffe [10].

4 Experiments

We evaluate the proposed detector on three public face detection benchmarks, including FD-
DB, AFW, and PASCAL faces and compare our approach against the state-of-the-art ones.
From the comparison, we can see that our detector can achieve top detection performance
while running at super real-time speed.

4.1 Evaluation on FDDB

The FDDB dataset [9] is a challenging benchmark for face detection. It contains 2,845 im-
ages with a total of 5,171 faces, in a wide range of challenging scenarios including arbitrary
posea, occlusions, and blurred faces. All faces in FDDB have been annotated with elliptical
regions.

An evaluation toolbox is provided in [9] for comparisons of different face detection algo-
rithms. There are two metrics for performance evaluation: the discrete score and continuous
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Figure 4: On the FDDB dataset we compare MS-FCN detector with the state-of-the-art
methods including: Faceness [29], DenseBox [8], DDFD [4], CascadeCNN [14], Yan et
al. [26], ACF-multiscale [28], HeadHunter [17], Joint Cascade [1], SURF-multiview [15],
Zhu et al. [31] and Viola-Jones [24].

score. The discontinuous score metric counts the number of detected faces versus the num-
ber of false alarms. The detection result is regarded as true positive only if it has an IoU
above 0.5 to a ground-truth face. In the continuous score metric, the IoU ratio is considered
as the matching metric of the detection bounding box. The above two metrics correspond to
coarse match and precise match between the detection and the ground truth, respectively.

To match the ellipse annotation on FDDB better, we uniformly transform our square
detection bounding boxes to the ellipse ones. As shown in Fig. 4, the proposed method
outperforms most of the baseline methods in both the discontinuous and continuous score
metrics. Compared to other CNN-based detectors, our detector shows superior performance
over CascadeCNN, DDFD and Faceness detectors and is slightly inferior to DenseBox under
the discontinuous score metric. However, DenseBox is trained with three times more train-
ing data than our detector and the landmark information is used to boost the performance.
Although Faceness is also trained with additional face attribute information, it still shows
slightly inferior performance compared to our detector.

4.2 Evaluation on AFW

AFW dataset 1s built using Flickr images by Zhu ef al. [31]. It has only 205 images with
473 annotated faces. However, the images tend to contain cluttered background and faces
in AFW is with large variations in both face viewpoint and appearance (aging, sunglasses,
make-ups, skin color, expression etc.). Therefore, it is very challenging for detectors to
achieve good performance.

We evaluate our detector on AFW and the precision-recall curves are shown in Fig. 5.
Our MS-FCN detector achieves an average precision (AP) value of 97.7%, compared to
97.2% achieved by the Faceness detector. Our detector also outperforms other state-of-the-
art methods by a large margin.
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4.3 Evaluation on PASCAL faces

PASCAL face dataset [27] is another widely used face detection benchmark. It consists of
851 images and 1,341 annotated faces. Faces in this dataset is also with large variations in

both face viewpoint and appearance.

We test our detector on PASCAL faces and our method performs surprisingly well. Fig. 6
shows the precision-recall curves. Our MS-FCN detector achieves an AP value of 91.8% and
outperforms most state-of-the-art methods by a large margin. Our MS-FCN show slightly
inferior performance compared to the Faceness detector with an AP value of 92.1%.
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Figure 5: On the AFW dataset we com-
pare MS-FCN detector with the state-of-the-
art methods including: Faceness [29], Head-
Hunter [17], Structured Models [27], Shen et
al. [20], DPM [5] [17], TSM [31], Face.com,
Face++ and Picasa. AP: average precision.
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Figure 6: On the Pascal faces dataset we
compare MS-FCN detector with the state-
of-the-art methods including: Faceness [29],
HeadHunter [17], Structured Models [27],
DPM [5] [17], TSM [31], W.S. Boost-
ing [11], OpenCV, Sky Biometry, Face++

and Picasa. AP: average precision.

4.4 Runtime Efficiency

One of the important advantages of our MS-FCN detector is its efficiency. Our detector
contains K models at different scales. More importantly, they share the same conv features.
When detecting faces in images, our detector calculates feature maps of an octave only one
time and the K models can detect faces at different scales between two consecutive octaves.

CascadeCNN [14] is also designed considering the efficiency and can run at 100 fps on
the GPU. The cascade framework is used in CascadeCNN and a network with a lower reso-
lution is used at the first stage which rejects most false positive regions in an image. Deeper
and wider networks in following stages are applied to evaluate remaining detection windows
finely. However, the threshold in each stage needs to be verified carefully, otherwise, the de-
tector’s performance may drop quickly. With the same setting, our detector can run at nearly
100 fps, which is as fast as CascadeCNN L

Although the performance of DenseBox on the FDDB dataset and Faceness on the Pascal
faces dataset is slightly better than our detector, these two detectors are much slower. In [8],
it reports that DenseBox needs several seconds to process one image. Faceness is also low
in efficiency. In [29], a fast version of Faceness is proposed and can run at 20 fps on GPU,

'Our detector was tested on Nvidia GTX 980 while CascadeCNN was tested on Nvidia TITAN BLACK.
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however, the performance drops a lot and only achieves a 87% recall rate on FDDB, which
i1s much lower than 90.7% achieved by our MS-FCN detector.

5 Conclusion

In this paper, we propose a multi-scale fully convolutional network for face detection. The
K models in our system share the same convolutional features and can be trained end-to-end.
During testing, images at octave-spaced scale intervals in the pyramid need to be processed
by our detector. And faces at different scales at different scales between two consecutive oc-
taves can be detected by the K models at different scales. Experiments demonstrate that our
methods outperform most of the state-of-the-art methods across several challenging bench-
marks, including FDDB, PASCAL Faces, and AFW, while keeping real-time performance.
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