
OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING 1

Supervised Incremental Hashing

Bahadir Ozdemir1

ozdemir@cs.umd.edu

Mahyar Najibi1

najibi@cs.umd.edu

Larry S. Davis2

lsd@umiacs.umd.edu

1 Department of Computer Science
University of Maryland
College Park, MD 20742

2 Institute for Advanced Computer
Studies
University of Maryland
College Park, MD 20742

Abstract

We propose an incremental strategy for learning hash functions with kernels for large-
scale image search. Our method is based on a two-stage classification framework that
treats binary codes as intermediate variables between the feature space and the semantic
space. In the first stage of classification, binary codes are considered as class labels by
a set of binary SVMs; each corresponds to one bit. In the second stage, binary codes
become the input space of a multi-class SVM. Hash functions are learned by an efficient
algorithm where the NP-hard problem of finding optimal binary codes is solved via
cyclic coordinate descent and SVMs are trained in a parallelized incremental manner.
For modifications like adding images from a previously unseen class, we describe an
incremental procedure for effective and efficient updates to the previous hash functions.
Experiments on three large-scale image datasets demonstrate the effectiveness of the
proposed hashing method, Supervised Incremental Hashing (SIH), over the state-of-the-
art supervised hashing methods.

1 Introduction
Online image databases like Flickr grow steadily every day. Huge amounts of information lead
to the requirement of efficient search algorithms. The linear time complexity of exhaustive
similarity search can be reduced to sublinear time complexity for approximate nearest neighbor
search through discretization [5]. Several approaches have been proposed to discretize the
feature space by preserving pairwise similarities between data points. Binary hashing methods,
which map data points to short binary codes, have attracted attention from researchers in
different areas due to their effectiveness in large-scale search and efficiency in memory storage.
The methods for learning hash functions are categorized into unsupervised and supervised
learning schemes. In this paper, we only focus on supervised hashing.

Supervised hashing methods are constructed to capture semantic similarity between im-
ages. Semantic information such as class labels or tags is used to regularize the process of
learning binary codes. Several supervised methods have been proposed as extensions to unsu-
pervised techniques by making them aware of the semantics of data. Iterative Quantization
(ITQ) is used for both unsupervised and supervised hashing in conjunction with Principal
Component Analysis (PCA) and Canonical Correlation Analysis (CCA), respectively [6].

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 50.1-50.11

DOI: https://dx.doi.org/10.5244/C.30.50

https://dx.doi.org/10.5244/C.30.50

2 OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING

Binary reconstructive embedding (BRE) by Kulis and Darrell [10] aims to minimize the
difference between Euclidean distance in the input space and the Hamming distance between
binary codes. Supervised Hashing with Kernels (KSH) [15] was introduced based on the
same approach towards hashing. Discriminative binary coding methods [8, 17], like Random
Maximum Margin Hashing approach, try to improve generalization by using SVMs to pre-
serve the semantic structure in the Hamming space. Lin et al. [13] proposed a supervised
hashing method called FastHash that tries to capture the non-linearity in the feature space
utilizing decision trees and uses a GraphCut based method for optimization. Supervised
discrete hashing (SDH) [18] employs a linear support vector machine (SVM) to capture the
similarity in the semantic space.

Despite the fact that new images are added to online photo databases every day, to the
best of our knowledge, no supervised hashing method learns hash functions incrementally for
newly added images. Efficiently updating hash functions with new images is a challenging
task. Besides, some of the new images will possibly not belong to existing classes i.e. forming
new semantic classes, that makes this task even more challenging. For the existing hashing
methods, such modifications to a database require recomputation of hash functions from
scratch whenever a change occurs in a dynamic dataset, which is computationally intractable.

In this paper, we propose an incremental supervised hashing method with kernels based on
binary and multi-class SVMs, which we refer to as Supervised Incremental Hashing (SIH). We
adopt the incremental learning fashion of SVMs in a hashing framework. Consequently, SIH
can be easily extended to unseen classes incrementally. We identified three main objectives for
our supervised hashing method – as being incremental and parallelizable, avoiding overfitting
by better generalization, and balancing +1/−1 in learned binary codes. The significance
of balanced binary codes has been studied in the hashing literature [7, 11, 14, 20] and their
absence leads to ineffective codes, especially when the code length is small and/or the sizes
of semantic classes are unbalanced. To overcome these issues, we reformulate the supervised
hashing task as a two-stage classification framework. In the first stage of classification, we
use a binary SVM for each bit. The feature space is the input space of SVMs while binary
codes are considered as class labels. In the second stage, the binary codes become the input
space of a single multi-class SVM, and the semantic space is the output space of the SVM.
Also, we penalize imbalance in binary codes in our optimization formulation.

We define an incremental strategy to learn SVMs and a discrete cyclic coordinate descent
(DCC) algorithm, similar to the one of SDH, to learn binary codes bit by bit as an approximate
solution to the NP-hard discrete optimization problem. Our contributions can be summarized
as follows:

• We propose a supervised hashing approach that provides better generalization with
regularizations and maximizes the entropy by balancing binary codes. We formulate
our hashing objectives in a single optimization task.

• We describe an algorithm that solves the optimization problem efficiently by an incre-
mental strategy for training SVMs and an approximation to the solution of an NP-hard
problem.

• We define an incremental strategy for the proposed hashing method that takes the earlier
hash functions and the final state of the database as its input and efficiently computes
new hash functions which perform similarly to those computed from scratch on the
final state of the database.

OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING 3

The rest of the paper is organized as follows: Section 2 introduces the proposed hashing
method. Section 3 gives performance evaluation and comparison with the state-of-the-art
supervised hashing methods, and Section 4 provides conclusions.

2 Incremental Hashing

2.1 Problem Definition
Given a set of data points {xi}n

i=1, each xi ∈ Rd , the goal of supervised hashing is to learn
a function H that maps data points to m-dimensional binary codes capturing underlying
semantics. Several hashing methods [5, 6] construct such a hash function by collecting a set
of m linear binary embeddings H(x) = [h1(x), . . . ,hm(x)]> such that h j(x) = sign(w>j x+β j)

where w j ∈Rd is the normal vector and β j ∈R is the intercept of a hyperplane for j = 1, . . . ,m.
Some methods [11, 15] employ a nonlinear embedding algorithm with a kernel function
ϕ : Rd×Rd → R such that each binary embedding has the form h j(x) = sign(w>j ϕ(x)+β j)

where ϕ(x) = [ϕ(x,a1), . . . ,ϕ(x,ar)]
> and {al}s

l=1 is a set of anchor points randomly selected
from training samples.

2.2 Learning Hash Functions for Dynamic Databases
Modifications to an image database consist of adding new images to the database and deleting
images from the database. Considering a database with class information, there are four types
of modifications:

1. Adding new classes,

2. Adding images to existing classes,

3. Deleting existing classes,

4. Deleting images from existing classes.

In this paper, we focus on the first three types of modifications. From a hashing perspective,
the last type of modifications is the least interesting one because it technically results in
reducing training size. Among the rest, deleting existing classes is the easiest case because
we have already learned binary codes for all images in the final database. On the other hand,
adding new classes is the hardest case since we have no prior information about the new
classes.

We define three hashing strategies for dynamic datasets:

1. Passive strategy: Continuing to use the hash functions learned from an earlier state of
the database i.e. ignoring the changes in the training data.

2. From-scratch strategy: Learning hash functions on the final state of the database from
scratch whenever a change occurs in the database.

3. Incremental strategy: Learning hash functions on the last state of the database incre-
mentally starting from the previous hash functions.

The incremental strategy can be considered as effective and efficient if its retrieval performance
is similar to that of the from-scratch strategy while its training time is shorter. We first describe
our supervised hashing method; then provide an incremental hashing strategy for our method
in the following sections.

4 OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING

2.3 Supervised Incremental Hashing

We define a joint optimization task as a combination of m binary linear SVMs and a multi-
class linear SVM by Crammer and Singer [3] and an imbalance penalty. Our method searches
for an optimal set of binary codes {bi}n

i=1 where bi = [bi1, . . . ,bim]
> corresponds to the ith

data point in the training set. Let Y denote the set of ground truth semantic classes and yi ∈ Y
denote the class label of the ith data point; then we define a multi-class SVM model that maps
binary codes to semantic classes i.e. bi 7→ yi for i = 1, . . . ,n.

Let B ∈ {−1,+1}n×m be a matrix that collects binary codes where the ith row of B is
equal to b>i . We define a binary SVM model treating {ϕ(xi)}n

i=1 as input data and column
j of B as binary class labels for j = 1, . . . ,m. In addition, we add a new term that penalizes
imbalanced assignments of +1/−1 in binary codes. Our formulation for supervised hashing
is given by

min
B,W,Ξ

λ

(
1
2 ∑

k∈Y
‖wb

k‖2 +Cb
n

∑
i=1

ξ b
i

)
+

m

∑
j=1

(
1
2
‖wx

j‖2 +Cx
n

∑
i=1

ξ x
i j

)
+ γ

m

∑
j=1

∣∣∣∣
n

∑
i=1

bi j

∣∣∣∣

s.t. ∀(i,k) (wb
yi
−wb

k)
>bi ≥ 1[yi 6= k]−ξ b

i ,

∀(i, j) bi j (wx
j)
>ϕ(xi)≥ 1−ξ x

i j,

∀(i, j) ξ x
i j ≥ 0,

bi ∈ {−1,+1}m

(1)

where λ and γ are scaling parameters, Cx and Cb are soft margin parameters of the SVMs.
Note that the sum of column j in B is equal to zero when bit j is balanced. There will be no
penalty for bit j in this case. This imbalance penalty is also important for the performance
of the binary SVMs with the fixed parameter Cx since they are sensitive to imbalance in
the datasets [1]. We can add an extra element 1 to the vectors of all data points and binary
codes in order to add a bias term to the loss function of SVMs. Finally, our hash function
is defined as H(x) = sign

(
(Wx)>ϕ(x)

)
where the jth column of Wx ∈ Rd×m is equal to

wx
j for j = 1, . . . ,m. Similarly, we define another weight matrix Wb ∈ Rd×m such that its

jth column is equal to wb
k for k = 1, . . . , |Y|. This optimization task can be solved by an

alternating algorithm that consists of two main steps: Training SVMs and learning binary
codes as follows.

2.4 Training SVMs

If we fix all binary codes B, the optimization problem (1) will be reduced to m separate binary
SVM and one multi-class linear SVM problems. These (m+ 1) SVMs can be trained in
parallel since they are conditionally independent on binary codes. We employ an efficient
large-scale SVM learning technique called the Optimized Cutting Plane Algorithm for SVMs
(OCAS) [4]. The OCAS algorithm is based on approximating the original convex loss
function of an SVM by a piecewise linear function defined as the maximum over a set of
linear under-estimators called cutting planes. At each step, a new cutting plane is added to the
set with a cost of O(nd) complexity. Each under-estimator is a linear approximation to the
loss function of the SVM at a weight point w′. The method also has a multi-class counterpart
called OCAM.

OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING 5

The OCAS method tries to minimize the total number of iterations by additional compu-
tations at each step. Let F(w) = 1

2‖w‖2 +C R(w) be an SVM objective function such that
‖∂R(w)‖ ≤ G, then the OCAS method converges after at most

log2
F(0)

4C2G2 +
8C2G2

ε
−2

iterations where ε denotes a tolerance value. We can further reduce the total number iterations
for an SVM with hinge loss by log2

nC
F(w0)

if there exists an initial weight vector w0 better
than the zero vector i.e. F(w0)< F(0) (See supplementary materials). Considering the cases
of adding new images to existing classes and deleting classes, the solution to the previous
SVM problem can be a good starting point. In addition, changes in binary codes B from one
iteration to the next one are usually small during the execution of our algorithm. Therefore,
we take advantage of the pre-computed SVMs from the previous iteration in an incremental
approach. We employ a warm start strategy for training SVMs similar to [19]. We initialize
the best-so-far solution in the OCAS algorithm with the solution to the SVM in the previous
iteration instead of a zero vector for each bit. This initialization results in a reduced number
of iterations in the OCAS computation and fewer cutting planes. If there exists no change in
column j of B between iteration (t−1) and iteration t, the corresponding SVM is not trained
again. Similarly, the same approach is used for the multi-class linear SVM using the OCAM
algorithm. Our hashing method converges when the entire matrix B remains unchanged.

2.5 Learning Binary Codes
In the process of learning binary codes B, we fix all the SVM weights {wx

j}m
j=1 and {wb

k}k∈Y
in (1). This results in an NP-hard problem. As a result, we take an approach akin to the
discrete cyclic coordinate descent algorithm in [18]. We learn binary codes column by column
in B iteratively based on the rest of the binary codes until convergence. For updating bit j in
bi for i = 1, . . . ,n, we reduce (1) to the following optimization problem:

min
{bi j}ni=1

n

∑
i=1

L(bi j, i, j)+ γ
∣∣∣∣

n

∑
i=1

bi j

∣∣∣∣

s.t. ∀i bi j ∈ {−1,+1}
(2)

where L(z, i, j) represents the total hinge losses depending specifically on data point i when
the corresponding bit j is equal to z ∈ {−1,+1}, specifically:

L(z, i, j) = β Cb max
k∈Y

(
1[yi 6= k]+ z(wb

k, j−wb
yi, j)+θi jk

)
+Cx max

(
0,1− z(wx

j)
>ϕ(xi)

)

where θi jk = ∑u6= j biu(wb
k,u −wb

yi,u) is a bias term that depends on the binary codes ex-
cluding bit j. In case of no penalty for imbalance (γ = 0), the closed-form solution is
bi j = arg minz∈{−1,+1}L(z, i, j) for i = 1, . . . ,n. In our case, we need to consider the trade-off
between the hinge losses and the imbalance penalty. This is achieved by sorting the data points
with respect to the difference δi j = L(−1, i, j)−L(+1, i, j) and finding a cutting location
between +1/−1 assignments as follows. Let I contain the indices of data points in ascending
order, then the cutting location is determined by

cut= arg min
l∈{0,...,n}

(
γ|2l−n|+

l

∑
i=1

L
(
−1, I[i], j

)
+

n

∑
i=l+1

L
(
+1, I[i], j

))
. (3)

6 OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING

Next, we assign −1 to bit j of data points from I[1] to I[cut] and +1 for data points from
I[cut+1] to I[n]. Note that the first sum in (3) represents the cumulative hinge losses for the
assignments of −1 and the second one represents the same for +1 assignments. We repeat
these column updates for j = 1, . . . ,m until B converges; that typically requires a few full
updates of B.

The proposed Supervised Incremental Hashing (SIH) method is summarized in Algo-
rithm 1.

Algorithm 1 Supervised Incremental Hashing
Input: Training data {(xi,yi)}n

i=1, code length m, number of anchor points r, maximum
iteration number max_iter, parameters Cx, Cb, λ and γ .

Output: Binary codes B, hash function H(x) = sign
(
(Wx)>x

)
.

1: Randomly select r anchor points {ai}s
i=1 from the training data

2: Compute the kernel function ϕ(xi) for i = 1, . . . ,n.
3: Initialize binary codes B(0) with a random string in {+1,−1}m for each class.
4: for t← 1 to max_iter do
5: for j← 1 to m in parallel do
6: if column j of B(t−1) 6= column j of B(t), then
7: Train binary SVM for bit j using the OCAS algorithm on

{(
ϕ(xi),b

(t−1)
i j

)}n
i=1.

8: end if
9: end for

10: Train linear multiclass SVM using the OCAM algorithm where the data is{(
b(t−1)

i ,yi
)}n

i=1.
11: repeat
12: for j from 1 to m do
13: Compute cut in (3) of the main paper
14: Update column j in B(t) according to cut and I.
15: end for
16: until B(t) convergences
17: if B(t−1) = B(t) then
18: break the loop
19: end if
20: end for

2.6 Incremental Updates to Hash Functions
Our method can be efficiently updated whenever a modification occurs in the training set. We
describe the initialization of our incremental learning strategy from the easiest to the hardest
type of modification as follows:

1. Deleting existing classes: Let Yd be the set of deleted class labels, we remove wy
k

for k ∈ Yd from the multi-class SVM {wb
k}k∈Y and the rows of B that correspond to

images associated with any class in Yd and start our incremental strategy to adopt to
the changes.

2. Adding images to existing classes: For each class, the most frequent binary string
pattern from B is found. Next, each new image is initialized with the corresponding

OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING 7

binary code according to its class and the hashing functions are changed incrementally
with our method.

3. Adding new classes: New rows to B are added corresponding to new images, and we
initialize each new class with a random binary string. Since we do not have multi-class
SVM trained on the new classes, we only train the multi-class SVM {wb

k}k∈Y f on B f
from scratch where the subscript f denotes the final version. The hashing functions are
learned with our incremental algorithm.

3 Experiments
We conducted extensive experiments to assess the effectiveness and efficiency of the proposed
method, SIH. Before evaluating the performance on dynamic datasets, we first compared
our method with the state-of-the-art supervised hashing techniques including CCA-ITQ [6],
KSH [15], FastHash [13], and SDH [18]. The performance of the methods was analyzed
regarding search accuracy and training/testing time on three large-scale datasets – CIFAR-10,
MNIST, and NUS-WIDE. All experiments were performed in the MATLAB environment on
a machine with a 2.8 GHz Intel Core i7 CPU and 16GB RAM using the public code provided
by the authors with their suggested parameters unless otherwise specified.

3.1 Datasets and Experimental Setup
The CIFAR-10 dataset [9] has 60,000 labeled images from 10 classes of vehicles and animals.
There exist 50,000 training and 10,000 test images in the dataset. In our experiments, each
image is represented by a GIST descriptor [16] of 512 dimensions. The MNIST dataset [12]
is a collection of 28×28 pixel images of handwritten digits. The dataset contains a training set
of 60,000 examples and a test set of 10,000 examples. The NUS-WIDE dataset [2] includes
269,648 images and associated semantic labels of 81 concepts from Flickr. Unlike the other
two datasets, each image is associated with zero or more labels. Therefore, we only used the
training images that are associated with exactly one of the most frequent 10 tags. The resultant
training set has 38,255 images with 10 classes. Similarly, we constructed a query set of 25,386
images among the test images associated with only one of those tags. A 500-dimensional
bag-of-words vector is used to represent each image in our experiments where the codebook
is generated from SIFT descriptors.

For the KSH method, 5,000 images are sampled uniformly from the training part of
each dataset because of long training time of this technique (Table 1). The tree depth
parameter of FastHash is set to 2 due to its higher computational complexity. We sample
1,000 images uniformly from the training sets as anchor points {al}s

l=1 for all the hashing
methods with kernels (SIH, KSH, and SDH). All these kernel methods used an RBF kernel
ϕ(x,a) = exp

(
−‖x− a‖2/2σ2

)
with a kernel width σ which is adjusted for each dataset

using cross-validation. For all datasets, features are first centered to zero; then each data
sample is normalized to have the unit length.

For SIH, we adjusted the soft margin parameters of the SVMs and the kernel width based
on cross-validation on some binary codes obtained from other hashing methods. Next, we
empirically adjusted the other parameters λ and γ for each dataset. We prefer the multi-class
SVM dominate the process of learning binary codes by setting λ to a large number. For
example, for the CIFAR-10 dataset the parameter values are Cx = 16, Cb = 10−3, λ = m×108

and γ = 105. The maximum number of iterations is set to 5 like SDH.

8 OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING

3.2 Evaluation Methodology
We employed leave-one-out validation on test data in our experiments to assess the quality
of hash functions learned from training data. We used each image in the test data as a query
while we treat the remaining test images as a retrieval set. For each query, we rank images
according to Hamming distances between their binary codes and that of the given query. For
quantitative analysis, we compute precision and recall value at each Hamming radius. Next,
these values are used for computing mean average precision (mAP) and also mean precision
values.

3.3 Effects of Training and Anchor Set Size
We start our experiments by analyzing the effects of training and anchor set size on retrieval.
The SIH method is analyzed in details with different numbers of anchor points and training
points for comparison (Table 1). As expected, larger training and anchor sets provide better
performance with longer execution time. The number of anchor points has a greater influence
on retrieval performance than training size. Note that the test time is affected by the scale
of the anchor set. Our method outperforms other methods in retrieval performance while it
has competitive execution time. Note that the training time in Table 1 can be enhanced by a
computer with a larger number of nodes as our method has a distributed inference algorithm.

Table 1: Our method (SIH) is compared in terms of mean average precision (mAP), mean
of precision at Hamming radius r = 2, training and test time for 32-bit hash codes on the
CIFAR-10 dataset. The experiments were performed on a machine with an Intel quad-core
processor.

Method Training Anchor mAP Precision Training Test
Set Size Set Size at r = 2 Time (s) Time (µs)

SIH

5,000 300 0.322 0.383 2.7 6.1
5,000 1,000 0.366 0.420 7.5 15.9
5,000 3,000 0.393 0.438 47.3 45.7

50,000 300 0.360 0.417 61.7 6.3
50,000 1,000 0.429 0.478 171.1 17.7

SDH 50,000 1,000 0.422 0.478 25.0 24.9
Fasthash 50,000 - 0.357 0.271 628.4 102.6
KSH 5,000 1,000 0.343 0.322 2,802.8 26.8
CCA-ITQ 50,000 - 0.325 0.410 1.5 3.8

3.4 Retrieval Performance Analysis
We report retrieval performance as mean average precision (mAP) for all methods on the
three datasets in Figure 1 for different code lengths. As seen in the table and figures, the
proposed hashing method outperforms the state-of-the-art supervised hashing methods on the
CIFAR-10 and MNIST datasets, in which each image belongs to a single class. In addition,
the imbalance penalty improves the retrieval performance for almost all cases. Note that we
used a sequential sampling procedure for initializing B where balanced binary codes have

OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING 9

a higher probability for the SIH version with imbalance penalty i.e. γ > 0. SDH provides
the second best performance. On the other hand, our method has the best performance on
the NUS-WIDE dataset for shorter binary codes, and it has competitive results along with
FastHash and SDH for longer codes.

8 16 32 64 128
Number of Bits

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

m
AP

NUS-WIDE

8 16 32 64 128
Number of Bits

0

0.2

0.4

0.6

0.8

1

m
AP

MNIST

8 16 32 64 128
Number of Bits

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m
AP

CIFAR-10

SIH SDH FastHash KSH CCA-ITQ

Figure 1: Our method (SIH) is compared with the state-of-the-art methods on, from left to
right, the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean average precision
(mAP). Dashed line represents SIH without imbalance penalty.

3.5 Retrieval Performance Analysis for Dynamic Datasets

We evaluated our incremental hashing strategy in comparison to the passive and from-scratch
strategies for the aforementioned three types of modifications on the CIFAR-10 dataset with
32 bits binary codes in terms of mAP scores and training time. For the case of deleting classes,
we first learned hash functions from the entire training data. Next, we removed images from
randomly selected classes and learned hash functions both from scratch and incrementally
on the final training data. We repeated this 25 times and reported mAP and training time. A
similar methodology in the reverse order was employed for adding new classes case. For
adding new images to existing classes case, we first learned hash functions from a randomly
selected subset of training data and then used the entire training set for from-scratch and
incremental strategies. For adding new classes and new images to existing classes, we used
the same query set as in the previous section. For deleting classes case, we removed the
images associated with those classes and computed mAP for the rest of the queries. The
mAP and training time are shown in Figure 2 for three types of modifications. Note that
the training time reported for the passive strategy represents the initial computation time,
and it does not have any additional computation for changes in the dataset. Our incremental
hashing strategy reaches the same retrieval performance as the from-scratch strategy while
requiring shorter training time. Note that the total computation time for both training on 10%
of training data and incrementally training on the entire data is less than the training time on
the entire data set from scratch. As a result, it might be a sound strategy to use our supervised
hashing method as a combination of training on a small set of representative images followed
by incremental training on the entire training data. This will reduce the training time of our
method in Table 1.

10 OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING

Passive Hashing Incremental Hashing Hashing from scratch

1 2 3 4
Number of New Classes

0

0.1

0.2

0.3

0.4

0.5

m
AP

Adding New Classes

1 2 3 4
Number of New Classes

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

Adding New Classes

1 2 3 4
Number of Deleted Classes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
AP

Deleting Existing Classes

10 25 50 75
Initial Training Size / Final Training Size (%)

0

0.1

0.2

0.3

0.4

0.5

m
AP

Adding Images to Existing Classes

10 25 50 75
Initial Training Size / Final Training Size (%)

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

Adding Images to Existing Classes

1 2 3 4
Number of Deleted Classes

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

Deleting Existing Classes

Figure 2: Incremental Hashing is compared with from-scratch and passive hashing for
different types of modifications, from left to right, adding new classes, deleting existing
classes and adding new images to existing classes on CIFAR-10 in terms of mean average
precision (mAP) in the first row and in terms of training time in the second row at 32-bits.

4 Conclusion
We presented an incremental supervised hashing method based on a two-stage classification
framework. We formulated a joint optimization task for the classification problem and the
problem of finding optimal binary codes. An efficient algorithm was developed for learning
hash functions in a distributed scheme where the sub-problems are solved independently.
Experiments validate that the incremental hashing strategy for dynamic datasets is capable of
updating hash functions efficiently. Besides, the proposed approach provides higher quality
codes with well-balanced bits and better generalization.

Acknowledgments
This research is based upon work supported by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D
Contract No. 2014-14071600012. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

OZDEMIR, NAJIBI, DAVIS: SUPERVISED INCREMENTAL HASHING 11

References
[1] R. Batuwita and V. Palade. Class Imbalance Learning Methods for Support Vector Machines,

pages 83–99. John Wiley & Sons, Inc., 2013.

[2] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. Nus-wide: A real-world web image
database from national university of singapore. In CIVR, Santorini, Greece, 2009.

[3] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. JMLR, 2:265–292, March 2002.

[4] V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk minimization.
JMLR, 10:2157–2192, December 2009.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB,
pages 518–529, 1999.

[6] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: a Procrustean approach
to learning binary codes for large-scale image retrieval. TPAMI, 35(12):2916–2929, December
2013.

[7] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer. Compact hashing with joint optimization of
search accuracy and time. In CVPR, pages 753–760, 2011.

[8] R. He, Y. Cai, T. Tan, and L. S. Davis. Learning predictable binary codes for face indexing. Pattern
Recognition, 48(10):3160 – 3168, 2015.

[9] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

[10] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In NIPS, pages
1042–1050, 2009.

[11] B. Kulis and K. Grauman. Kernelized Locality-Sensitive Hashing. TPAMI, 34(6):1092–1104,
2011.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[13] G. Lin, C. Shen, Q. Shi, Anton V. d. Hengel, and D. Suter. Fast supervised hashing with decision
trees for high-dimensional data. In CVPR, pages 1971–1978, June 2014.

[14] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In ICML, pages 1–8, 2011.

[15] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with kernels. In CVPR,
pages 2074–2081, 2012.

[16] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial
envelope. IJCV, 42(3):145–175, 2001.

[17] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discriminative binary
codes. In ECCV, pages 876–889, 2012.

[18] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised discrete hashing. In CVPR, June 2015.

[19] C.-H. Tsai, C.-Y. Lin, and C.-J. Lin. Incremental and decremental training for linear classification.
In International ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pages 343–352, New York, NY, USA, 2014.

[20] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In NIPS, pages 1753–1760,
2009.

