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Abstract

Estimating the pose of a camera is a core problem in many geometric vision applica-
tions. While there has been much progress in the last two decades, the main difficulty is
still dealing with data contaminated by outliers. For many scenes, e.g. with poor light-
ning conditions or repetitive textures, it is common that most of the correspondences are
outliers. For real applications it is therefore essential to have robust estimation methods.

In this paper we present an outlier rejection method for absolute pose estimation. We
focus on the special case when the orientation of the camera is known. The problem is
solved by projecting to a lower dimensional subspace where we are able to efficiently
compute upper bounds on the maximum number of inliers. The method guarantees that
only correspondences which cannot belong to an optimal pose are removed. In a number
of challenging experiments we evaluate our method on both real and synthetic data and
show improved performance compared to competing methods.

1 Introduction
Camera pose estimation is a classic problem in computer vision and it is used as a basic
building block in many 3D reconstruction pipelines. For instance, in order to add a new
image to an existing 3D reconstruction, one can first match image points to the 3D-model,
and then compute the camera’s pose parameters using the available 2D-3D correspondences.
The problem is often referred to as the absolute pose problem or resectioning. Inevitably,
some of the matches will be incorrect, and therefore robust estimation techniques such as
RANSAC with a minimal solver [6] are required. For calibrated cameras the minimal case
is three point correspondences, see [7, 12]. In [13] Kukelova et al. present a minimal solver
using only two points with the additional assumption that the rotation axis is known.

There exist several methods for the absolute pose problem with given point correspon-
dences. These methods are often called Perspective-n-Points (PnP) methods [5, 14, 21, 22].
Most of these methods assume that outliers have been removed in a pre-processing step and
consider only the pose estimation problem. A notable exception is the method from Ferraz
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et al. [5] which extends the method from [15] by adding an outlier rejection scheme. The
PnP method in [3] uses a branch-and-bound approach to compute the maximum number of
inliers in an optimal manner, but at the price of worst-case exponential running time.

In this work we consider the special case where the camera orientation is known. This
situation is common in robotics, for example, where the orientation often can be estimated
with other sensors, or using some other application specific knowledge. In the experimental
evaluation we show one such example where we perform metric localization for a car driv-
ing through a tunnel based on a single image. The tunnel has extreme amounts of repetitive
textures making it difficult for standard approaches. At the same time, there is a strong prior
knowledge on the orientation of the car. The main contribution in this paper is an outlier
rejection scheme for this setting. Our method can handle difficult cases with high outlier ra-
tios (> 99%) and is guaranteed to only remove correspondences which cannot be an inlier to
the optimal camera position. The idea is to reduce the problem to a one dimensional search,
which can be efficiently solved in low order polynomial time. We experimentally compare
our approach with the methods in [5, 12]. To our knowledge, there is no competing method
that is able to perform outlier rejection for absolute pose with known orientation based on
geometric reprojection errors in timeO(n2 logn) where n is the number of correspondences.

The idea of outlier rejection was first developed by Svärm et al. [19] for city-scale lo-
calization. In the paper they present an outlier rejection scheme based on the assumptions
that the gravity axis is known in the camera frame and that a plane which contains the focal
point is approximately known. The outlier rejection is then performed by projecting the re-
projection cones to the known plane and computing bounds in this lower dimensional space.
Another work which is conceptually similar to ours is by Wilson and Snavely [20], where
they present a method for the different problem of robust relative translation averaging. In
the work they consider the case when the orientations are known and the goal is to estimate
global camera positions which are consistent with as many pairwise relative estimates as
possible. To solve this they employ a similar strategy where they perform outlier rejection
by solving one dimensional sub-problems.

2 Background
In this work we consider the problem of estimating the camera pose given 2D-3D point
correspondences. We assume that the internal camera calibration is known. For our camera
model we use spherical cameras where the projections are formed by scaling to unit length
in the camera coordinate system, that is, for a camera with pose parameters (R, t), a point X
is projected to

R(X− t)
‖R(X− t)‖ . (1)

For calibrated cameras the most natural error metric is the angular reprojection error. In this
metric we say that a 2D-3D correspondence (x,X) is an inlier to a camera (R, t) if the angle
between the reprojection and the image point is less than some fixed threshold ε , i.e.

∠
(

x,
R(X− t)
‖R(X− t)‖

)
≤ ε ⇔ 〈x, R(X− t)〉 ≥ cos(ε)‖R(X− t)‖ , (2)

where ∠ denotes the angle. If the orientation of the camera is known we can without loss
of generality assume, R = I, by rotating the image points. Each 2D-3D correspondence then
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constrains the translation t to lie in a cone in R3,

K =

{
t ∈ R3

∣∣∣∣ ‖X− t‖ ≤ 1
cos(ε)

〈x, X− t〉
}
. (3)

In the presence of outliers it will not be possible to satisfy all reprojection constraints. In-
stead we search for a translation which is contained in as many cones as possible. Let Ki
correspond to the cone formed using the ith 2D-3D correspondence. The problem is then
equivalent to

max
I

|I| s.t.
⋂

i∈I
Ki 6= /0, (4)

where I ⊂ {0,1,2, . . . ,N} is the index set for the unknown inlier correspondences. If I? is
the optimal inlier set in (4) then any t? ∈ ⋂i∈I?Ki is optimal to the original problem. Note
that here optimal is in the sense that it maximizes the number of inlier correspondences for
some given threshold ε (and not the total reprojection error). The main difficulty of the
problem is to identify the correct 2D-3D correspondences and if necessary the solution can
be further refined using standard bundle adjustment methods [10, 11].

3 Outlier Rejection

In this section we present our method for outlier rejection for the absolute pose problem. We
assume that the orientation is known or can be estimated using other methods.

For a point correspondence (x0,X0) we want to decide if it is possible for this correspon-
dence to be an inlier to an optimal translation. If the result is negative we can safely remove
the correspondence from further consideration. In the notation of (4) this corresponds to
determining if the cone K0 can be part of the optimal solution. If we assume that this is the
case then we can reformulate the problem as

max
I

|I| s.t.
⋂

i∈I
(K0∩Ki) 6= /0. (5)

The intersection of multiple cones can be very complex. To simplify the problem we orthog-
onally project each cone intersection K0∩Ki to the center line of the cone K0, see Figure 1.
Furthermore since each non-empty intersection K0 ∩Ki is a closed convex set, the projec-
tions will form closed intervals [ai,bi] ⊂ R. This projection reduces the problem to one
dimension.

Once all of the intervals have been found we compute the maximum number of over-
lapping intervals. This problem can be solved by simply sorting the interval boundaries and
going through them. The maximum number of overlapping intervals will be an upper bound
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K0

Ki

Figure 1: The intersection between the cones K0 and Ki forms a closed convex set. Orthog-
onally projecting this set to the center line in K0 yields a closed interval.
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Figure 2: Each intersection K0∩Ki is projected to the center line of K0. These projections
form intervals and by counting the number of overlapping intervals we find an upper bound
for the number of cones which can simultaneously intersect K0. In the image the optimal
translation is indicated by a blue star.

for the solution in (5). See Figure 2. The procedure is summarized in Algorithm 1.

for each cone Ki do
`i← center line in Ki
for each cone K j do

[a j,b j]← project (Ki∩K j) onto `i
end
Sort the boundary points {a j} and {b j}
Loop through the boundaries keeping track of the number of overlaps
if the number of overlaps is less than the best known solution then

Mark the cone Ki as an outlier
end

end
Algorithm 1: Outlier rejection
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4 Finding the Intersection Bounds
To find the interval corresponding to the projection of K0∩Ki we want to solve the problem

min/max 〈x0, t〉 (6)
s.t. ‖X0− t‖ ≤ α 〈x0, X0− t〉 (7)

‖Xi− t‖ ≤ α 〈xi, Xi− t〉 , (8)

where α = 1/cos(ε) and x0 is the unit direction of the center line. This is a conic opti-
mization problem and can be solved by standard solvers such as MOSEK [16] or SeDuMi
[18]. Unfortunately since we need to solve many instances to compute the bounds for a sin-
gle correspondence, these methods are too computationally expensive to be of practical use.
Therefore in the next section we show how to quickly compute bounds by replacing cones
with outer planar approximations.

4.1 Planar Approximations
To simplify the problem of computing the interval bounds we approximate the cones with
polyhedral sets. For each cone Ki we find a set of tangent planes such that

Ki ⊂ { t | 〈ak, t〉 ≤ bk, k = 1,2, . . . ,np }. (9)

The plane normals ak are chosen such that they are evenly distributed around the cone. This
is illustrated in Figure 3. In Section 6.1 we experimentally evaluate how the number of planes
affect the solution. Of course as the number of planes tend to infinity the approximation error
vanishes.

When we compute the projections we only need to approximate the cone on which we
perform outlier rejection on (i.e. K0). The problem in (6) then becomes

min/max 〈x0, t〉 (10)
s.t. 〈ak, t〉 ≤ bk, k = 1,2, . . . ,np (11)

‖Xi− t‖ ≤ α 〈xi, Xi− t〉 . (12)

The approximation allows us to solve the problem by enumerating the possible Karush-
Kuhn-Tucker (KKT) points [2]. Each KKT point can be solved for in closed form. Addi-
tionally we need to check if the problem is unbounded, which will result in an unbounded
interval [ai,∞). More details and derivations can be found in the supplementary material.

5 Pose Estimation Pipeline
Our full pipeline for pose estimation is first running the outlier rejection, followed by a few
iterations of RANSAC on the remaining correspondences. In each iteration of Algorithm 1
we also compute a translation candidate by taking a point on the center line `i which lies in
the maximal interval. This simple heuristic gives a good lower bound (i.e. an actual solution)
which allows us to more quickly discard outliers and hence achieve improved runtimes.

When the orientation is fixed there remain three degrees of freedom in the camera pose.
This means that with one point correspondence the problem is under-constrained and with
two it is over-constrained. This can be resolved by ignoring one coordinate for one of the
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Figure 3: A cone approximated by a set of planes (np = 4 in this case). The apex is located
at Xi and its axis is directed along −xi. The vectors ak correspond to the plane normals.

points and solving for the translation using only the three remaining coordinates. In this case
the problem reduces to a simple linear system.

In our RANSAC we sample two points and construct four translation estimates by dis-
carding each of the four coordinates. We then keep the translation which gives the smallest
reprojection error for the discarded coordinate. In the experiments we denote this 1.5 point
RANSAC.

6 Experimental Evaluation on Synthetic Data

6.1 Evaluation of the Planar Approximation
In this section we evaluate how the number of planes affect the approximation error. We
generated random pairs of cones and computed the intersection intervals, that is, solving
min/max problem (10) for the planar approximation using a varying number of planes. For
each pair we also computed the intersection interval without any approximation using CVX
[8]. Figure 4 (left) shows the average relative interval size for different number of planes
over 1000 instances. We can see that using four planes only gives an average approximation
error of about 10%.
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Figure 4: Left: Evaluation of the interval size for the planar approximation. The sizes are
relative to the ground truth interval size. Right: Histogram over upper bounds obtained
during outlier rejection performed on 4000 correspondences with 75% outliers.
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6.2 Evaluation of the Upper Bounds
In this section we evaluate the upper bounds computed by the outlier rejection and how the
planar approximation described in Section 4.1 affects them.

First, upper bounds were calculated using the planar approximation by generating 4000
synthetic 2D-3D correspondences and performing the outlier rejection scheme described in
Section 3. Points were generated from a uniform distribution in the box [−3,3]× [−3,3]×
[7,13], and a spherical camera was similarly generated in the cube [−1,1]× [−1,1]× [−1,1].
After projecting the 3D points into the camera, 75% of the 3D points were re-sampled in or-
der to create outlier correspondences. The angle of the error cones was set to ε = 0.1◦. Figure
4 (right) shows a histogram over the upper bounds found using the planar approximation.

Note that the majority of the correspondences have an upper bound less than 20, and
that there is a peak at 1000. The peak corresponds to the 25% inliers, and all correspon-
dences with an upper bound less than 20 can be safely classified as outliers and permanently
discarded.

Finally we compared the upper bounds calculated using the planar approximation with
the upper bounds from the exact solution found using CVX [8]. For this, 100 correspon-
dences were generated as described above, and upper bounds were calculated using both
methods. This was repeated 10 times. The upper bounds were identical in both methods
for over 90% of the correspondences, the rest differing only by one from the exact solution.
This suggests that the planar approximation approach can be safely used in place of the much
slower exact solution. The runtime for the CVX based code was about 20-30 minutes per
instance, while the outlier rejection using the planar approximations (implemented in C++)
ran in a couple of milliseconds.

6.3 Comparison to Other Methods
In this section we compare the performance of the outlier rejection to other methods for
robust absolute pose estimation. We compare with RANSAC using both the 1.5p solver
(known orientation) and the 3p solver (full pose) from [12]. Furthermore we compare with
the recent method from Ferraz et al. [5] which solves the PnP problem using an algebraic
outlier rejection scheme.

Similarly to the experimental setup in [5], we generate synthetic cameras with image size
640×480, focal length 800 and principal point in the center of the image. For each instance
we sampled 1000 3D points uniformly from the box [−2,2]× [−2,2]× [4,8] in the camera’s
coordinate system. After projecting the points we resampled a subset of the 3D points, thus
creating some outlier correspondences. To the projections we added Gaussian noise with
2 pixel standard deviation.

Using our method we performed outlier rejection followed by 10 iterations of 1.5p
RANSAC on the remaining points. For the other two RANSAC methods we ran 100 itera-
tions, which makes the runtime approximately the same for our method and 1.5p RANSAC
(about 30-40ms per instance). Figure 5 shows the results from the experiment. We present
our results both with and without the additional 1.5p RANSAC iterations. The number of
inliers is measured relative to the number of inliers for the ground truth pose. Note that due
to the added noise the ground truth pose is not necessarily the optimal pose. Figure 5 also
shows the relative translation error ‖t− tGT‖/‖t‖.

The experiment shows that our method is able to produce good estimates for problems
with extremely large outlier ratios. Furthermore we can see that the initial estimate produced
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by the outlier rejection is very good. On average we were able to remove 96.7% of the
outliers.
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Figure 5: Comparison with other methods over 100 random instances. Left: The number of
inliers relative to the number of inliers for the ground truth pose. The peak at 99% inliers for
the RANSAC methods is due to the optimal inlier set approaching the size of the minimal
sets. Right: The relative translation error (‖t− tGT‖/‖tGT‖).

7 Experimental Evaluation on Real Data
In this section, we evaluate our framework on real data. Our application of interest is to
develop an off-line verification system which is capable of determining the accuracy of a
self-driving car’s internal odometry based on dead-reckoning. This is typically done with
differential GPS which has an accuracy of up to a few centimetres. However, for the scenario
we consider (a tunnel), the GPS signal is not accessible and there is a need for an independent
way of checking the accuracy. This application will serve as a test bed for our framework.

The first step is to construct a 3D model of the tunnel. We have used a publicly available
structure from motion package ([4]) based on SIFT features. In total, 600 images covering
approximately 300 m taken from a car were used. The 3D model consists of 904,038 points
each equipped with a SIFT descriptor1. See supplementary material for a video of the 3D
model. As a second step, we have acquired two independent image sequences, consisting of
544 images in total, see Figure 6 for some examples. All images were taken with a GoPro
Hero4 Black at 120 fps with resolution 1920×1080 pixels. Further, the exposure was set to
ISO 6400 to handle the low-light conditions. Internal camera calibration was obtained using
MATLAB Calibration Toolbox [1].

For the test images, there is no ground truth available. In order to create a so-called gold
standard, that is, the best possible benchmark test under current conditions, we proceed as
follows. Assume for a moment that the absolute pose of the first image in the sequence with
respect to the 3D model is available. As the speed of the car is (approximately) known as
well as its direction, we can predict the position at the next time frame. At this position, we
can project the 3D model points and compare to the extracted SIFT features in the image. If
the SIFT features match according to the standard Lowe criterion and are within 10 pixels
of the image point, we consider it a plausible 2D-3D correspondence. The camera pose is
then refined using bundle adjustment [10]. This process is iterated throughout the whole se-
quence. The first image, taken outside the tunnel, contains an abundance of matches. Hence,
we can reliably compute the camera pose with standard 3-point RANSAC followed by bun-
dle adjustment. We have visually checked that the obtained correspondences are correct.

1For an actual verification system, one would also need to verify the 3D model accuracy.
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Figure 6: Two pose estimation examples from the tunnel experiment. Left column: Input
images with SIFT features (blue points). Middle column: Reprojected 3D model (red
circles) of inlier correspondences. Right column: Camera pose in world coordinate frame.

The complete 3D camera trajectory has also been visually inspected to ensure consistency.

Now to the actual benchmark test. For each image, we extracted SIFT features from the
image and matched each descriptor to the 5 closest in the 3D model using FLANN [17].
Note that this produces at least 80% outliers, but it also ensures that we are likely to obtain
some correct matches despite repetitive patterns (lane markings, lights etc.). The estimated
camera position is considered correct if it lies within 0.10 m of the gold standard position.
We compare our approach of outlier removal (Section 5) with 3-point RANSAC [6, 12] with
varying levels of iterations. Both methods use the inlier threshold ε = 0.2◦ and perform bun-
dle adjustment for refinement on the inlier set. The camera orientation is only approximately
known as the tunnel turns. Therefore, for our method, we test 10 different pre-set orienta-
tions. Still, our method is several factors faster than 3-point RANSAC with 1000 iterations
(the speedup depends on the number of correspondences as well as implementation). See
Figure 6 and supplementary material for a video of the localization results.

As can be seen in Table 1, our approach compares favourably to RANSAC in terms of
localization success rate. The main difference is that our approach is able to cope with the
high rates of outliers, which is supported by the fact that RANSAC improves as the number
of iterations increases. In the outlier rejection step, similar to the synthetic case, most of
the outliers (typically more than 90%) are discarded. By inspection, we have found that the
failure cases are mainly due to the lack of discriminative image features. Saturation due to
light sources and reflections are also reasons for failure. In most of the failure cases, there
are simply not enough of correct correspondences. Another source of errors are the pre-set
orientations. Figure 7 shows the error between the ground truth rotation and the closest of
the 10 pre-set rotations for the 544 test images.
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Method Outlier 3p RANSAC 3p RANSAC 3p RANSAC
rejection 1,000 iterations 10,000 iterations 50,000 iterations

Success rate 96% 44% 74% 88 %

Table 1: Metric localization on the tunnel benchmark set (544 images). Images are consid-
ered correct if the estimated camera position is within 0.10 m of the gold standard position.
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Figure 7: Histogram over the minimum angle between the ground truth rotation and the 10
pre-set rotations used for the 544 test images. The error should be compared to the inlier
threshold ε which was set to 0.2 degrees.

8 Conclusions

In this paper we have presented a simple and efficient method for outlier rejection for abso-
lute camera pose estimation in the case of known orientation. The method is guaranteed to
remove only true outliers to the optimal solution. In the experiments, both on synthetic and
real data, we have shown that the method is able to remove most outliers, which greatly sim-
plifies the problem. To solve the remaining pose estimation we have used RANSAC but this
could be substituted for other pose estimation methods. By using polyhedral approximations
we achieve significant computational speedups without compromising solution quality.

We have also presented an application in a very challenging setting: Metric localization
from a single image in a tunnel. The images are taken in low-light conditions (hence noisy)
and contain repeated patterns, reflections, saturations and many times, little texture. Still, we
have shown that it is possible to solve the localization problem provided that one can generate
sufficiently many correct inlier correspondences. A possible extension of our method is to
perform rotation search when the orientation is unknown. For instance, our method can be
used in conjunction with the branch-and-bound framework of Hartley and Kahl [9].
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