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Abstract

In this paper, we present a novel SpaTial Attention Residue Network (STAR-Net)
for recognising scene texts. Our STAR-Net is equipped with a spatial attention mech-
anism which employs a spatial transformer to remove the distortions of texts in natural
images. This allows the subsequent feature extractor to focus on the rectified text re-
gion without being sidetracked by the distortions. Our STAR-Net also exploits residue
convolutional blocks to build a very deep feature extractor, which is essential to the suc-
cessful extraction of discriminative text features for this fine grained recognition task.
Combining the spatial attention mechanism with the residue convolutional blocks, our
STAR-Net is the deepest end-to-end trainable neural network for scene text recognition.
Experiments have been conducted on five public benchmark datasets. Experimental re-
sults show that our STAR-Net can achieve a performance comparable to state-of-the-art
methods for scene texts with little distortions, and outperform these methods for scene
texts with considerable distortions.

1 Introduction
Scene text recognition refers to recognising words that appear in various kinds of natural
images. It has received much attention as many real world applications can benefit from
the rich semantic information embedded in the scene text images. Examples include self-
driving cars, text-to-speech devices for visually-impaired people, and image-based machine
translation softwares. In recent years, remarkable progress in scene text recognition has been
achieved for tightly bounded text images with no severe distortion [15, 19, 20, 38]. In general
scenarios, however, scene texts often do not occupy the entire image, and they suffer from
various kinds of distortions (see Figure 1(a)). Hence, it remains an open challenge to build a
recogniser that is capable of handling such loosely bounded and distorted scene texts.
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(a) (b)

Figure 1: Text images from some public benchmark datasets and images rectified by our
spatial attention module. (a) At the top are four tightly bounded, horizontal and frontal text
images; at the bottom are text images suffering from different kinds of distortions. (b) Text
images with different kinds of distortions are rectified by our spatial attention mechanism.

The literature is relatively sparse when it comes to the problem of handling spatial dis-
tortion in text recognition. Phan et al. [30] employed the SIFT descriptor as an invariant
feature for recognising perspective scene texts. Instead of using hand-crafted features, we
tackle this problem using a spatial attention mechanism that is capable of directly outputting
the transformation parameters required for the rectification. Figure 1(b) shows some rec-
tification results using our spatial attention mechanism. This spatial attention mechanism
transforms a distorted text region into a canonical pose suitable for recognition. This greatly
eases the difficulties in recognising loosely bounded and severely distorted texts. During
the course of preparation of this paper, Shi et al. [33] published a similar idea for handling
distorted text regions. Similar to the work by Lee and Osindero [24], they introduced a
RNN-based attention model from neural machine translation [7, 35]. Their RNN-based at-
tention model focused on how to translate the features extracted from an input image into
the corresponding sequence of labels. In scene text recognition, this can be considered as a
problem of image-based sequence-to-sequence classification. Instead of using RNN-based
attention models and focusing on how to translate the extracted text features, we emphasise
the importance of representative image-based feature extraction from text regions using a
spatial attention mechanism and a residue learning strategy [14].

In this paper, we propose a novel deep residue network with a spatial attention mech-
anism for unconstrained scene text recognition. We name our network SpaTial Attention
Residue Network (STAR-Net). On one hand, we adopt a spatial transformer module [21]
to introduce spatial attention into our network. This guarantees the full potential of the sub-
sequent feature extractor is exploited in extracting discriminative text features, rather than
being tolerant to spatial distortions. On the other hand, because of the recent success of
residue learning in image classification [14, 36], demonstrating its strong capability in learn-
ing representative image features, we adopt residue convolutional blocks to build a feature
extractor with more convolutional layers than [24, 32, 33]. Such a deep feature extractor can
extract discriminative text features suitable for this fine grained recognition task. The key
contributions of this work are
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1. An end-to-end trainable STAR-Net which is a novel deep neural network integrat-
ing spatial attention mechanism and residue learning for scene text recognition. Ex-
perimental results show that it outperforms other state-of-the-art methods for loosely
bounded text images with considerable distortions.

2. A spatial attention mechanism that can simultaneously locate the text region and elim-
inate its geometrical distortion without the need of any direct supervision. This spatial
attention mechanism transforms a distorted text region into a canonical pose suitable
for recognition. This greatly eases the difficulties in recognising loosely bounded and
severely distorted texts, and allows the subsequent feature extractor to fully devote its
power to extracting discriminative text features, rather than being tolerant to spatial
distortions.

3. A deep feature extractor builds upon residue convolutional blocks, with the extremely
deep convolutional layers and one recurrent layer (BLSTM) [11] being optimised
under the non-parameterised supervision of Connectionist Temporal Classification
(CTC) [13]. Note that this is the very first time that residue convolutional blocks
demonstrate strong capabilities for scene text recognition.

2 Methodology
In the following sections, we describe in detail the three key components of our STAR-
Net, namely the spatial transformer (Section 2.1), the residue feature extractor (Section 2.2)
and the connectionist temporal classification (Section 2.3). Figure 2 illustrates the overall
architecture of our STAR-Net.

Residue Convolutional Blocks BLSTM

Residue  Feature Extractor

CTC

(b)

(c)

Spatial 
Transformer

Spatial Attention Mechanism
(a)

Figure 2: Overview of our STAR-Net for scene text recognition. (a) Spatial attention mech-
anism. (b) Residue feature extractor. Residue convolutional blocks with different widths
represent different sizes of feature channels. (c) Connectionist Temporal Classification.

2.1 Spatial Transformer
The spatial transformer is responsible for introducing the spatial attention mechanism, by
transforming a loosely bounded and distorted text region into a more tightly bounded and
rectified text region. It enables the subsequent feature extractor to fully focus on extracting
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discriminative text features instead of being tolerant to spatial distortions. The spatial trans-
former is composed of three parts, namely localisation network, sampler and interpolator
(see Figure 3(a)). The localisation network is used to determine the distortion exhibited by
the original text image and outputs the corresponding transformation parameters. Based on
these parameters, the sampler locates sampling points on the input image which explicitly
define the text region to be aed. Finally, the interpolator generates the output image by in-
terpolating the intensity values of the four pixels nearest to each sampling point. In order
to simplify the explanation, we use a spatial transformer with an affine transformation to
illustrate the idea.

Localisation Network The localisation network takes the original grey image I ∈ RW×H

with width W and height H as input, and directly outputs the parameters of an affine trans-
formation

θ(I) =
[

a11 a12 a13
a21 a22 a23

]
. (1)

In this work, the localisation network θ(·) takes the form of a convolutional neural network,
which includes a final regression layer to predict all the transformation parameters. We do
not have any direct supervision towards the transformation parameters. The network will be
trained to learn the suitable parameters for different inputs according to the gradient back-
propagated from the recognition objective function (Eq. 7).

Sampler The sampler aims at locating a sampling point on the input image for every pixel
in the output image I′ ∈ RW ′×H ′ (i.e., the rectified image). A sampling point (xi,yi) on the
input image for a pixel (x′i,y

′
i) on the output image can then be computed using the parameters

θ(I) in Eq. 1 as follows,
[

xi
yi

]
= θ(I)




x′i
y′i
1


 . (2)

Interpolator The interpolator generates an intensity value for a pixel (x′i,y
′
i) in the output

image from the intensity values of the four pixels in the input image which are nearest to
the sampling point (xi,yi). In this work, we employ bilinear interpolation to compute the
intensity values from those of the four nearest pixels.

Note that all the equations are differentiable. This allows the spatial transformer to be
optimised easily using a gradient descent algorithm.

2.2 Residue Feature Extractor
To fully exploit the potential of convolutional layers and build up a powerful deep feature
encoder, we employ residue convolutional blocks for extracting image-based features, and
use Long Short-Term Memory (LSTM) [16] for encoding long-range dependencies among
sequential features. Note that the feature map outputted from the convolutional neural net-
work is in the spatial domain, and has a dimension of Cs×Hs×Ws, where Cs, Hs and Ws
denote the channels, height and width of the feature map respectively. We transform this
three-dimensional feature map into sequential features by cutting it along its width into Ws
2D slices, each with a dimension of Cs×Hs, and remapping each slice into a vector~st , where
t = [1,2, . . . ,Ws].
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Figure 3: Structures of the spatial transformer, plain and residue convolutional blocks. (a)
Spatial transformer; (b) On the left is the plain convolution block; on the right is the residue
convolutional block.

Residue Convolutional Block The residue block used in our encoder includes two convo-
lutional layers, two ReLU[28] activations and a shortcut connection between the input and
the output of the second convolutional layer (see Figure 3(b)). Let x denote the input to
the block, and H(x) is a complicated function that we want to approximate. A plain con-
volutional block targets at finding suitable parameters (Wpb) of the convolutional layers to
approximate H(x) directly, i.e.,

H(x) = PB(x,Wpb), (3)

whereas a residue convolutional block, with the special shortcut connection, targets at finding
suitable parameters (Wrb) of the convolutional layers to approximate the residue function
H(x)− x, i.e.,

H(x) = RB(x,Wrb)+ x. (4)

Although both blocks should be capable of approximating H(x), the ease of optimisation is
different. In order to avoid the degradation problem1 caused by adding more plain convolu-
tional blocks, STAR-Net employs the residue convolutional block as a basic component to
build an extremely deep feature extractor with 18 convolutional layers.

Long Short-Term Memory Long Short-Term Memory (LSTM) is a kind of recurrent
layer capable of learning long-range dependencies of the input sequential features. The basic
component of LSTM is the memory block. Each memory block consists of a memory cell c,
an input gate i, a forget gate f and an output gate o, respectively, and can be formulated as

~it = σ(Wi× [~ht−1,~st ]+~bi), g ∈ {i, f ,o}
~ft = σ(W f × [~ht−1,~st ]+~b f ),

~ot = σ(Wo× [~ht−1,~st ]+~bo),

~ct = ~ft ·~ct−1 +~it · tanh(Wc× [~ht−1,~st ]+~bc),

~ht =~ot · tanh(~ct),

(5)

1He et al. [14] point out that with the network depth increasing, accuracy gets saturated and degrades rapidly.
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where the W terms denote the weights (e.g., Wi is the weight of the input gate),~b denote the
bias (e.g.,~bi is the bias of the input gate),~h denote the hidden states, and σ is the logistic sig-
moid function. In this work, we use one Bidirectional-LSTM layer [11] which calculates~ht
(where t = 1,2, . . . ,Ws), using the memory block from both forward and backward directions
(see the BLSTM part in Figure 2).

2.3 Connectionist Temporal Classification
One of the distinctive properties of CTC is that there are no parameters to be learned for
decoding. This addresses our goal in emphasising the importance of our feature extractor on
extracting discriminative sequential features by keeping our decoder simple. Let L denote
the set of 36-class (26 letters and 10 digits) case insensitive characters in our task and L′ =
L∪{blank}. At the last step of our encoder, we adopt a softmax layer to output a probability
map y = {~y1, . . . ,~yWs} conditioned on the sequential features ~st . Each ~y t is a probability
distribution over L′, and~y t

m represents the probability of observing the label m at time t. The
probability of a given sequence π with length Ws is defined as p(π) = ∏Ws

t=1~y
t

πt . As in [13],
we define the map-to-one map B that removes the repeated labels and then all the blanks
from the output sequence (e.g., B(−−a−bb−d− c) = abdc). For a given labelling l with
length T (T ≤Ws), its probability can be formulated as

p(l|y) = ∑
π

p(π), π ∈ B−1(l), (6)

where B−1(l) denotes the set of sequences with length Ws which are mapped to l by B. The
objective function Octc of CTC is defined as the sum of the negative log likelihood of Eq. 6
over the whole training set S:

Octc =− ∑
(l,y)∈S

ln p(l|y). (7)

Since the number of sequences corresponding to a given labelling increases exponentially
with Ws, a dynamic programming named Forward-Backward algorithm (see [12]) is used for
calculating Octc and its partial derivatives ∂Octc

∂~y t
πt

efficiently when training the final CTC layer.
In the phase of predicting the sequence of labels, we simply pick the label with the highest
probability at each time step and then apply B to the entire output path.

3 Experiment
In this section, we evaluate the performance of our STAR-Net for scene text recognition on
the following five public benchmarks.

• ICDAR-2003 [26] contains 251 full-size scene images and 860 cropped text images
for testing. Each cropped text image has a 50-word lexicon defined by Wang et al.
[37]. A full lexicon is constructed with all 50-word lexicons. Following the protocol
proposed by Wang et al. [37], we recognise the images containing only alphanumeric
words (0-9 and A-Z) with at least three characters.

• ICDAR-2013 [23] is derived from ICDAR-2003, and contains 1,015 cropped word
test images without any pre-defined lexicon.
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• IIIT5K [27] contains 3,000 cropped text images for testing. These images are col-
lected from the Internet and each image has a 50-word lexicon and a 1,000-word lexi-
con.

• Street View Text [37] contains 647 test word images which are cropped from 249
street-view images collected from Google Street View. Each word image has a 50-
word lexicon.

• Street View Text Perspective [30] contains 639 cropped testing images which are
specially picked from the side-view angles in Google Street View. Most of them suffer
from large perspective distortions. Each image is associated with a 50-word lexicon.

In Section 3.2 and Section 3.3, “50”, “1K” and “Full” denote each scene text recog-
nised with a 50-word lexicon, a 1,000-word lexicon and a full lexicon respectively. “None”
represents unconstrained scene text recognition without any lexicon.

3.1 Implementation Details
Since our STAR-Net is an extremely deep network, it is difficult to simultaneously optimise
the feature extractor and the spatial transformer from scratch. We adopt a pre-training strat-
egy to successfully train the whole STAR-Net. First of all, we train the feature extractor
together with CTC on a toy dataset, in which all the text images are tightly bounded and
horizontal. This toy dataset is generated using the tools provided by Jaderberg et al. [1].
Training on the toy dataset guarantees our feature extractor and CTC understand what kind
of text regions is ideal for text recognition. In our experiments, we find this strategy provides
good initial parameters for the residue feature extractor and shortens the whole training pro-
cedure. We then add a spatial transformer with an affine transformation and train the whole
network on the synthetic dataset released by Jaderberg et al. [18]. This dataset contains
text images with different kinds of deformations. We initialise the parameters of the spatial
transformer to represent an identity transformation. After the network is converged, we treat
the parameters of this network as our pre-trained parameters. In order to handle more com-
plex distortions, we replace the spatial transformer with one using a more flexible 10-point
thin plate spline (TPS) transformation [6]. We use the pre-trained parameters to initialise
the network with a TPS transformation, and fine-tune the whole network with a relatively
small learning rate. In this paper, all the networks are trained using grey-scale images. The
input sizes of our spatial transformer and the following feature extractor are 150× 48 and
100×32, respectively. Batch Normalization [17] is used after every convolutional layer. The
parameters of our networks are all optimised by Adadelta [40]. Our implementation is based
on the publicly available code of Torch7 [8] and Warp-ctc [4].

Architectures Besides STAR-Net, we also evaluate three other network architectures to
demonstrate the effectiveness of each component in STAR-Net. These architectures are listed
in Table 1 and summarised as follows:

• CRNN is proposed by Shi et al. [32]. It has seven convolutional layers (arranged as
plain convolutional blocks, see Figure 3(b)) and two BLSTM layers.

• STA-CRNN introduces the spatial attention mechanism into the architecture of CRNN.
The input to the feature extractor in this architecture is the rectified image outputted
from the spatial transformer.
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Name SAM Unit1 Unit2 Unit3 Unit4 Unit5 BLSTM(2,2,2,2) (2,2,2,2) (1,2,1,2) (1,2,1,2)

CRNN N
[
3,64

]
×1

[
3,128

]
×1

[
3,256

]
×2

[
3,512

]
×2

[
3,512

]
×1 2

STA-CRNN Y
[
3,64

]
×1

[
3,128

]
×1

[
3,256

]
×2

[
3,512

]
×2

[
3,512

]
×1 2

R-Net N
[
3,64

]
×5

[
3,128

]
×4

[
3,256

]
×4

[
3,512

]
×4

[
3,512

]
×1 1

STAR-Net Y
[
3,64

]
×5

[
3,128

]
×4

[
3,256

]
×4

[
3,512

]
×4

[
3,512

]
×1 1

Table 1: Four architectures for scene text recognition. “SAM” represents spatial attention
mechanism. The sizes of convolutional filters and channels are shown in brackets with num-
ber of layers stacked. After each unit, a max-pooling layer is used except the last one. The
width, height, strides of the max-pooling kernel are shown below each unit. Each LSTM has
256 hidden units.

• R-Net is a simplified version of STAR-Net, with the spatial attention mechanism re-
moved. It has eighteen convolutional layers and one BLSTM layer in its feature en-
coder. Compared with CRNN, R-Net is roughly 2.5 times deeper and is optimised
with residue learning.

• STAR-Net integrates the spatial attention mechanism with residue learning, and have
26 convolutional layers in total. It is by far the deepest model proposed for scene text
recognition.

Specifically, we directly use four plain convolutional blocks for the localisation network in
our spatial transformer. The filter size, stride and padding size of all the convolutional layers
are 3, 1 and 1 respectively. In order to reduce the computational complexity, the channels
of these four blocks are 16, 32, 64 and 128, respectively. Each plain convolutional block is
followed by a 2×2 max-pooling layer with a stride of 2. A fully connected layer with 256
hidden units is used for outputting all the transformation parameters.

3.2 Results on General Datasets
Experiments are first conducted on four general datasets, namely, ICDAR-2003, ICDAR-
2013, IIIT5K and Street View Text, and the results are shown in Table 2. It can be ob-
served that, on both tasks of lexicon-based and lexicon-free recognition, STAR-Net is able
to achieve either highly competitive or even state-of-the-art performance. Note that in these
datasets, most of the text regions are horizontal but not tightly bounded, and only few of
them are severely distorted. The remarkable performance on these four datasets shows the
ability of STAR-Net in handling loosely bounded scene texts. From Table 2, we can find
that the performance of STAR-Net on both ICDAR datasets is not as good as that on IIIT5K
and SVT. One possible explanation is that the proportion of deformed text images in SVT
and IIIT5K is higher than that in the ICDAR datasets. This might cause the spatial attention
mechanism not being effective on the ICDAR datasets. Besides, there are more blur or low-
resolution text images in the ICDAR datasets. This makes our spatial attention mechanism
more difficult to locate the text region and rectify it precisely. By comparing the results of
CRNN and R-Net, we also observe that significant improvement can be brought by exploit-
ing deep convolutional layers with residue learning. On the other hand, the effectiveness of
the spatial attention mechanism is not that obvious in these four general datasets.
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Method IC03 IC13 IIIT5K SVT
50 Full None None 50 1K None 50 None

ABBYY [37] 56.0 55.0 - - 24.3 - - 35.0 -
Wang et al. [37] 76.0 62.0 - - - - - 57.0 -

Mishra et al. [27] 81.8 67.8 - - 64.1 57.5 - 73.2 -
Novikova et al. [29] 82.8 - - - - - - 72.9 -

Wang et al. [38] 90.0 84.0 - - - - - 70.0 -
Bissacco et al. [5] - - - 87.6 - - - 90.4 78.0

Goel et al. [9] 89.7 - - - - - - 77.3 -
Alsharif and Pineau [3] 93.1 88.6 - - - - - 74.3 -

Almazán et al. [2] - - - - 91.2 82.1 - 89.2 -
Lee et al. [25] 88.0 76.0 - - - - - 80.0 -
Yao et al. [39] 88.5 80.3 - - 80.2 69.3 - 75.9 -

Rodriguez-Serrano et al. [31] - - - - 76.1 57.4 - 70.0 -
Jaderberg et al. [20] 96.2 91.5 - - - - - 86.1 -

Su et al. [34] 92.0 82.0 - - - - - 83.0 -
Gordo and Albert [10] - - - - 93.3 86.6 - 91.8 -
*Jaderberg et al. [22] 98.7 98.6 93.1 90.8 97.1 92.7 - 95.4 80.7
Jaderberg et al. [19] 97.8 97.0 89.6 81.8 95.5 89.6 - 93.2 71.7

Shi et al. [33] 98.3 96.4 90.1 88.6 96.5 93.8 81.9 96.1 81.9
Lee et al. [24] 97.9 97.0 88.7 90.0 96.8 94.4 78.4 96.3 80.7
CRNN [32] 98.7 97.6 89.4 86.7 97.6 94.4 78.2 96.4 80.8
STA-CRNN 97.1 95.6 89.1 87.3 96.6 92.9 80.1 95.5 80.7

R-Net 98.0 96.5 91.0 89.1 97.2 93.4 83.1 96.7 83.2
STAR-Net 96.9 95.3 89.9 89.1 97.7 94.5 83.3 95.5 83.6

Table 2: Scene text recognition accuracies (%). All the outputs in * [22] are constrained to a
90K dictionary even when recognising without a pre-defined lexicon.

3.3 Results on SVT-Perspective Datasets

Experiments are next carried out on the Street View Text Perspective dataset (SVT-Perspective).
In SVT-Perspective, most of the images suffer from severe perspective distortions. Table 3
shows that our STAR-Net outperforms other state-of-the-art methods on both lexicon-based
and lexicon-free recognition. By comparing the results of CRNN and STA-CRNN, we can
see the improvement brought by the spatial attention mechanism for highly distorted text im-
ages. Besides, it is interesting to notice that even without the spatial attention model, R-Net
can achieve a slightly better performance than STA-CRNN. This suggests that having deeper
convolutional layers with residue learning can also effectively make the network tolerant to
spatial distortions of the scene texts. Some specific examples recognised by our networks
are shown in Figure 4. In conclusion, the combining effect of the spatial attention mecha-
nism and deep convolutional layers with residue learning makes our STAR-Net outperform
other state-of-the-art methods for loosely bounded scene texts with considerable distortions.

STA-CRNN

rent

city

R-Net

rent

“blank”

STAR-Net

rent

city

SVT-Perspective

fitness fitness fitness

enterprise enterprise enterprise

camestod gamesiup gamestop

Figure 4: Some examples from SVT-
Perspective dataset. “blank” represents
the output is empty.

Method 50 Full None
Wang et al. [37] 40.5 26.1 -
Mishra et al. [27] 45.7 24.7 -
Wang et al. [38] 40.2 32.4 -
Phan et al. [30] 75.6 67.0 -
Shi et al. [33] 91.2 77.4 71.8
CRNN [32] 92.6 72.6 66.8
STA-CRNN 93.0 80.5 69.3
R-Net 93.0 83.6 70.9
STAR-Net 94.3 83.6 73.5

Table 3: Scene text recognition accura-
cies (%) on SVT-Perspective dataset.
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4 Conclusion
In this paper, we present a novel SpaTrial Attention Residue Network (STAR-Net) for recog-
nising scene texts with considerable distortions. The spatial attention mechanism in our
STAR-Net targets at removing the distortions of text in a natural image and producing a
tightly bounded text image. This allows the subsequent feature extractor to focus on the
rectified text region without being sidetracked by the distortions. Our feature extractor is
built upon residue convolutional blocks. It has extremely deep convolutional layers and one
recurrent layer (BLSTM) [11] being optimised under the non-parameterised supervision of
Connectionist Temporal Classification (CTC). Combining the spatial attention mechanism
with the residue convolutional blocks, our STAR-Net is the deepest end-to-end trainable
neural network for scene text recognition. Experiments on five public benchmark datasets
demonstrate that our STAR-Net can achieve a performance comparable to state-of-the-art
methods for scene texts with little distortions, and outperform these methods for scene texts
with considerable distortions.
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