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Abstract

Scene flow recovery from monocular image sequences is an emerging field in com-
puter vision. While existing Monocular Scene Flow (MSF) methods extend the clas-
sical optical flow formulation to estimate depths/disparities and 3D motion, we pro-
pose a framework based on Non-Rigid Structure from Motion (NRSfM) technique —
NRSfM-Flow. Therefore, both problems are formulated in the continuous domain and
relation between them is established. To cope with real data, we propose two preprocess-
ing steps for image sequences — redundancy removal and translation resolution — which
increase quality of reconstructions and speedup computations. In contrast to the exist-
ing MSF methods which can cope with non-rigid deformations, our solution makes no
strong assumptions about a scene such as known camera motion or camera velocity con-
stancy and can handle occlusions. NRSfM-Flow is qualitatively evaluated on challenging
real-world data. Experiments provide evidence that the proposed approach achieves high
accuracy and outperforms state of the art in terms of the ability to reconstruct MSF with
less prior knowledge about a scene.

1 Introduction
Scene flow recovery from monocular image sequences is an emerging field in computer vi-
sion. As of today, this topic was sparsely discussed in literature and only few works exist.
Scene flow refers to a dense 3D velocity vector field of a moving and possibly non-rigidly de-
forming scene, see Fig. 1 for an example. The concept is similar to optical flow, i.e. a dense
2D velocity vector field in an image plane. Scene flow finds applications in autonomous
driving, motion segmentation, motion capture, egomotion, 4D reconstruction, scientific vi-
sualization and other domains. In real applications, scene flow computation is mostly based
on stereo/multi view camera settings or sensors directly outputting depth.
The earliest work on monocular scene flow (MSF) recovery was carried out by Birkbeck et
al. The variational method proposed in [5] supports short image sequences and can handle
rigid, articulated and non-rigid motion. Several aspects may restrict applicability of the ap-
proach in practice, i.e. camera motion is assumed to be known in advance and constant in
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Figure 1: Results of the proposed NRSfM-Flow framework on the human face sequence, for several pairs of frames.
For every pair of frames: input frames (top row), recovered scene flow (down left) and geometry with overlayed 3D
motion fields from a new viewpoint. Better viewed in colour. See supplementary material for video. The proposed
approach is able to recover scene flow from monocular image sequences depicting non-rigid scenes and does not
make any assumptions on the scene or type of camera motion. It is robust to occlusions, among other things.

a short temporal frame. Another limitation is a high sensitivity to occlusions. In [6], the
same authors proposed a solution without the requirement of a known camera motion, but
with a known rigidly moving base-mesh geometry approximation of the scene. Mitiche et
al. recently proposed a variational method for concurrent recovery of structure and scene
flow [17]. As shown experimentally, the algorithm can handle noiseless scenarios with rigid
motion including scenes with few moving objects. Tikhonov regularization used in the algo-
rithm tends to oversmooth depth and motion discontinuities in the recovered 3D flow fields.
Further studies are required to make the technique applicable in more complex and realistic
scenarios. Motivated by remote patient monitoring and driver assistance systems, Xiao et
al. proposed an MSF estimation algorithm based on energy functional minimization [31].
Along with brightness and gradient constancy assumptions, velocity constancy over a short
period of time is reflected in the energy functional. The algorithm can use at least three
frames and does not require optical flow as an input. In experiments, an application of the
proposed technique in a challenging real-world driving scenario was demonstrated which is
commonly tackled by stereo based methods. However, support of scenes exhibiting non-
rigid deformations is limited.
The discussed methods share several common attributes. Firstly, they are formulated as en-
ergy minimization problems solved by an Euler-Lagrange differential equation. They extend
a classic optical flow formulation1 by estimating depths/disparities and a 3D motion field
instead of image motion and estimate correspondences and geometry simultaneously. Sec-
ondly, intrinsic camera parameters are assumed to be known. Thirdly, the reviewed methods
operate in a batched manner, i.e. they compute scene flow after the complete image sequence
is acquired. Fourthly, support of non-rigidly deforming structures is limited. Processing of
non-rigid scenes was demonstrated in the papers by Birkbeck et al. [5, 6], but assumptions
which need to be satisfied limit their applicability in practice considerably. Multiple com-
mon aspects encourage us to classify the reviewed MSF methods into a separate class which
we refer to as direct MSF methods.
Extension of optical flow to three dimensions is one possible approach to the problem of
MSF recovery. Another one is to adopt Non-Rigid Structure from Motion (NRSfM) tech-
niques. NRSfM allows reconstruction of non-rigidly deforming and moving 3D surfaces
from monocular image sequences given coordinates of tracked points for every frame (com-
bined in a measurement matrix). Birkbeck et al. [5, 6] mention NRSfM as a class of tech-

1which has its roots in the seminal work by Horn and Schunck [14]
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niques that can be potentially used to recover geometry of deformable scenes — a scenario
similar to MSF recovery. However, an explicit step for 3D motion field estimation is not
present in NRSfM methods. Another possible limiting factor for adopting NRSfM for scene
flow estimation at that time was the lack of dense techniques.
NRSfM methods take advantage of motion and non-rigid deformation as cues to infer ge-
ometry. They are based on factorisation of a measurement matrix with coordinates of the
tracked points into non-rigid shape and motion for every frame — an inverse problem in-
herently ill-posed in the sense of Hadamard. Additional constraints are required to obtain a
unique and reasonable solution. For an orthographic camera, the factorisation idea was first
proposed by Tomasi and Kanade for the rigid case [26] and later extended to the non-rigid
case by Bregler et al. [7]. In [7], every non-rigid shape is represented by a linear combi-
nation of basis shapes, wherein the basis shapes and the weights are unknowns. This idea
was further improved in successor methods proposing different types of constraints and op-
timization methods for higher stability and reconstruction accuracy [12, 13, 19, 20, 28] and
for sequential operation [2, 18]. Akhter et al. proposed employment of a trajectory basis
[3] instead of the metric one. It allows reduction of the number of unknowns in NRSfM,
since the trajectory basis is fixed in advance. As a result, NRSfM in the trajectory space can
lead to more stable reconstructions. Several papers investigated ways to improve this class
of methods and eliminate weaknesses such as ambiguity in trajectory bases [30] or to model
point trajectories more realistically [33]. The first dense NRSfM method was shown in [23]
followed by [10] which is currently one of the best performing methods qualitatively.
In contrast to direct MSF methods, NRSfM relies on correspondences obtained in a separate
step. The demand of sufficient motion implies a certain length of the image sequence. An-
other assumption commonly made in NRSfM methods is that a scene is centered throughout
the whole image sequence (similar to the direct method of [5]), which may limit application
of NRSfM methods in real-world scenarios.
Thus, several additional steps are required to adopt current NRSfM methods to the prob-
lem of MSF. Accordingly, the following contributions are made in this paper: 1) relation
between NRSfM and MSF is established. A novel analytical framework is introduced which
allows to analyse and relate both problems in the continuous domain on a high level of ab-
straction; 2) a solution to MSF recovery based on the extensively studied NRSfM under
orthography is proposed — the NRSfM-Flow; 3) two preprocessing steps are proposed —
to resolve translation in a scene and to compress the input image sequence by eliminating
redundant frames (frames with low variance in scene appearance) — so as to reduce the
runtime and enhance the overall accuracy of the approach; 4) NRSfM-Flow is designed and
implemented as a framework combining state of the art methods for correspondence compu-
tation [11, 27], non-rigid geometry reconstruction [10] and proposed preprocessing steps; 5)
results on several real-world image sequences are shown and performance of the proposed
approach is evaluated qualitatively. We consider MSF estimation as a standalone field in
computer vision. To the best of our knowledge, we are the first to propose an NRSfM-based
MSF method, to formulate NRSfM in the continuous domain and to propose explicit trans-
lation resolution and redundancy removal for NRSfM. Our approach can handle challenging
scenarios with non-rigid motion which cannot be handled by the current direct monocular
scene flow methods.
The rest of the paper is organized as follows. In Sec. 2, the formulation of NRSfM in the
continuous domain as well as relation of NRSfM and scene flow is derived. In Sec. 3,
the NRSfM-Flow framework is described together with preprocessing steps broadening the
scope of NRSfM, followed by experiments in Sec. 4 and conclusions in Sec. 5.
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2 MSF and NRSfM in the continuous domain
In this section, relation between NRSfM and MSF is established. Therefore, both problems
are formulated in the continuous domain. Continuous representation often allows one to
analyse problems and reveal their properties on a high level of abstraction. Moreover, multi-
ple variants of discretisation, numerical and optimization methods are possible in combina-
tion with it. In other words, the problem statement and its implementation is kept separate.

Assume an orthographic camera observes a 3D non-rigidly deforming scene S(p, t) con-
sisting of 3D points p from the continuous point space domain Ω ⊂ R3+1. Every point
possesses a colour, hence an additional space dimension denoted by +1. The observed scene
is different at each time t ∈ T⊂ R:

S(p, t) : Ω×T→ R3+1. (1)

The scene S(p, t) continuously produces 2D projections (images) on the camera sensor con-
taining 2D points v from the image domain Ψ⊂ R2+1:

I(v, t) : Ψ×T→ R2+1. (2)

We assume that the scene is registered to the origin of the coordinate system and the camera
translation T (t) is always 0. The scene and its image is related as

W(v̂, t) = Wτ(v̂, t)+C(v̂) = R(t) S(p, t), (3)

where R(t) : T→ SO(3) is the camera pose, W(v̂, t) is a measurement function (image co-
ordinates of the tracked points); the correspondence (2D motion field) function Wτ(v̂, t)
outputs a 2D displacement field relative to a reference time τ and C(v̂) is the point displace-
ment function in image coordinates relative to the origin of the coordinate system of the
image. Note that v̂ ∈ Ψ̂⊂ R2 are 2D colourless points and v̂⊂ v : v are visible at time τ; in
I(v, t), point displacements are given relative to the changing reference time τ , whereas in
the case of Wτ(v̂, t) the reference time τ is fixed (see Fig. 2 for geometric interpretations).
An infinitesimal change in camera pose and 3D scene structure Θ(p, t) : Ω×T→ R3 can be
described by a derivative of the right side of Eq. (3):

Θ(p, t) =
∂R(t)

∂ t
S(p, t)+R(t)

∂S(p, t)
∂ t

, (4)

where ∂
∂ t denotes a partial derivative with respect to time t. Note that unlike S(p, t), Θ(p, t)

represents a continuous 3D vector field, i.e. the 3D output encodes relative displacements
of points p, or scene flow. The scene flow is composed of a rotational component ρ(t) =
dR(t)

dt ∈ SO(3) and a deformational component ∂S(p,t)
∂ t .

Recall that in NRSfM, there is an inherent rotational ambiguity, i.e. the rotational compo-
nent can be explained either by a camera or an object movement or a combination of both;
without a prior knowledge it is not possible to determine a cause of the observed rotation.
This ambiguity means that all combinations are possible and lead to equivalent observations.
Assume that the camera is fixed, namely ∀t : R(t) = I and the object rotates. In this case
S(p, t) also covers observed rotations in the scene. We can exploit the rotational ambigu-
ity to simplify Eq. (4) — the rotational component is equal to zero and only the right term
remains in the expression:

Θ(p, t) =
∂S(p, t)

∂ t
. (5)
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Figure 2: On the left: orthographic projection of a 3D object to a 2D image plane — the projection lines are
parallel and intersect at infinity. In the middle: function W(v̂, t) = Wτ (v̂, t)+C(v̂) as in Eq. (3). W(v̂, t) outputs
absolute coordinates of the tracked points. On the right: function Wτ (v̂, t) visualized, see Eq. (6) — it outputs 2D
displacements of the points visible at the reference time τ for every time t.

domain meaning defined notions equations
p ∈Ω⊂ R3+1 all 3D points of a scene 3D scene S(p, t), scene flow Θ(p, t) Eqs. (3)–(5), (9)
p̂ ∈ Ω̂⊂ R3 reconstructed 3D points reconstructed 3D surface S(p̂, t) Eq. (8)
v ∈Ψ⊂ R2+1 all observed 2D points images I(v, t), optical flow ΞΞΞ(v, t) Eqs. (6)–(8)
v̂ ∈ Ψ̂⊂ R2 2D points visible at time τ measurement function Wτ (v̂, t) Eqs. (3), (6)

Table 1: Equations of the proposed theoretical framework relating NRSfM and MSF summarized

To insure ∀t : R2×3(t) = I2×3, the recovered rotation must be applied to the observed non-
rigidly deforming structure in 3D space. Therefore, we obtain the R3×3(t) matrix by extend-
ing R2×3(t) with a third row. The third row is equal to a cross product of the first two rows,
which guarantees orthonormality of the R3×3(t) matrix.
Likewise, the deformational component in the image plane can be computed from the image
function I(v, t) as a continuous 2D vector field referred to as optical flow ΞΞΞ(v, t) (algorithms
for computing optical flow from images are e.g. [14, 32]). The relation between the optical
flow ΞΞΞ and the measurement function Wτ reads:

Wτ(v̂, t) =
∫ t

τ
ΞΞΞ(v̂, t)dt. (6)

Change of τ causes change in Ψ̂, since the set of visible points is different at each time. From
Eqs. (3), (4) and (6) the relation between the infinitesimal optical flow and the scene flow
can be established as

∫ t

τ
ΞΞΞ(v̂, t)dt +C(v̂) = R(t) S(p̂, t), or (7)

ΞΞΞ(v̂, t) = R2×3(t)
∂S(p̂, t)

∂ t
, (8)

where points p̂ and v̂ are the reconstructed 3D points and their projections into the image
plane respectively. A summary of the domains and defined notions is given in Table 1.
Similar to Eq. (3) which relates geometry of a non-rigid scene with its projection into an
image plane, Eg. (8) relates changes in the geometry with changes in the projection. An
accumulated scene flow (or equivalently, 3D point trajectories which can be also expressed
as a set of 3D line integrals) in time interval [t1; t2] reads as an integral

∫ t2

t1
Θ(p, t)dt. (9)
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Using the introduced space-time structures and relations, it is possible now to give the formal
definitions of NRSfM and MSF recovery problems.

Definition of NRSfM. Given the displacements of the projected points Wτ(v̂, t) relative to
time τ , the objective of an NRSfM problem is to recover the underlying non-rigidly deform-
ing scene function S(p, t).

Definition of MSF. Given projections of the observed scene I(v, t), the objective of an MSF
problem is to reconstruct the scene flow function Θ(p, t).

As follows from the definitions, the inputs and objectives of NRSfM and MSF are differ-
ent, but related with Eqs. (6) and (4). Thus, it is possible to adopt NRSfM for estimation of
scene flow from monocular image sequences using the proposed analytical framework.

3 The NRSfM-Flow framework
In this section the NRSfM-Flow framework for MSF recovery is introduced. It encompasses
several steps including correspondence computation, geometry reconstruction as well as pre-
processing steps for input image sequences. Though NRSfM-Flow is designed with batch
processing in mind, it can be adopted for sequential processing.
To compute the measurement function W(v̂, t), we adopt the state of the art Multi-Frame
Optical Flow (MFOF) method of Garg et al. [11]. In the case of severe occlusions presented
in a scene, we also use the occlusion-aware MFOF of Taetz et al. [27]. To recover non-rigid
geometry and camera pose, we choose variational approach [10] combined with the GrabCut
algorithm [21] for foreground-background segmentation. Thus, the methods aiming at high
quality reconstructions are combined in NRSfM-Flow.
Preprocessing steps. NRSfM methods require sufficient diversity in non-rigid deformations
and camera motion as reconstruction cues. We propose to compress an input image sequence
so that it fulfils temporal and spatial assumptions of NRSfM in an optimal way. We call this
preprocessing step redundancy removal. Suppose at time ta an instantaneous image is con-
sidered for further processing. The next instantaneous image will be taken at time tb for
which the inequality holds:

∥∥∥∥
∫

Ψ̂

∫ tb

ta
ΞΞΞ(v, t) dt dv̂

∥∥∥∥
2
≥ ε, (10)

where ‖.‖2 denotes a 2-norm and ε is a scalar threshold. In other words, if total flow (2-norm
of the integrated flow field) in a time interval [ta; tb] is above a threshold ε , then a view at
time tb exhibits sufficient diversity relative to the view at time ta. Otherwise, another time in-
terval [ta; tb = tb+dt] should be evaluated. The optimality criterion proposed in Eq. (10) can
detect duplicate frames, small motions as well as oscillatory effects. Moreover, it can also
serve as a discretisation criterion, since the regularization parameter ε determines whether
the observed motion provides a sufficient reconstruction cue.
Though it is possible to resolve translation in a scene directly by registering the measurement
matrix to the mean coordinates of the structure, we notice that resolving it before computing
correspondences may increase accuracy of reconstructions. Therefore, we propose an ex-
plicit translation resolution step. Assuming that an object is entirely visible at the reference
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time τ , we segment the scene into foreground and background and track the ROI through-
out the image sequence using Kanade-Lucas-Tomasi feature tracker [16]. The output of the
translation resolution is a frame size and the corresponding translation function T (t).
After applying redundancy removal and translation resolution, correspondences are com-
puted faster. If required, reverse transformations can be applied in the postprocessing step.
The NRSfM-Flow framework is summarized in an algorithmic fashion in Alg. 1. Note that
the framework does not prescribe particular algorithms for the steps 2–5. They can be chosen
or tuned dependent on requirements (e.g. perspective or orthographic camera model, etc.).

Algorithm 1 NRSfM-Flow framework for MSF recovery

Input: monocular image sequence I(v, t) : Ψ×T→ R2+1.
Output: Scene flow Θ(p, t) : Ω×T→ R3

1: Initialization: depends on the underlying algorithms
2: Resolve translation, find translation function T (t)
3: Compress image sequence (eliminate redundant frames) according to Eq. (10)
4: Compute measurement function Wτ (v̂, t)
5: Factorize Wτ (v̂, t)+C(v̂) into non-rigid shapes S(p, t) and motion R(t)
6: Apply R(t) to S(p, t)
7: Compute scene flow according to Eq. (5)
8: Apply reverse transformations (−T (t) and geometry duplication) if required
9: Save the final recovered scene flow in Θ(p, t)

Implementation. Our test platform has 128 GB RAM, an NVIDIA GeForce TITAN Z GPU
and an Intel Xeon E5-1650 v3 CPU. We use our own C++/CUDA C implementations of the
methods [27] and [10] as well as a publicly available Matlab [15] version [22] of the method
[11]. The preprocessing steps were implemented in C++ using the OpenCV 3.0 library [1].
The implementation of [10] supports heterogeneous platforms with a multi-core CPU and
a CUDA-capable GPU. Since the framework is formulated in the continuous domain fol-
lowing Sec. 2, several discretisation aspects shall be mentioned here. In the beginning, we
choose discretisation points to coincide with image frames, wherein for computing deriva-
tives (step 7) forward finite differences between consecutive frames are used. In this case the
accumulated scene flow between two consecutive frames is computed, as defined in Eq. (9).
We are also able to estimate geometry between frames by interpolating the structure along
the accumulated 3D motion fields.

4 Evaluation
In this section the proposed NRSfM-Flow framework is qualitatively evaluated on several
challenging real-world image sequences depicting non-rigid scenes. The recovered 3D flow
fields and reconstructions are visualized. Additionally, projections of the scene flow into the
image plane and optical flow between consecutive frames are compared. We follow colour
schemes for optical and scene flow fields proposed in [4] and [29] respectively. Scenes which
can be handled by our method should fulfil the requirements, i.e. provide sufficient recon-
struction cues and preferably consist of a single non-rigidly deforming and moving (possibly
translating) object. We are not aware of scene flow benchmark datasets fulfilling the afore-
mentioned requirements. Therefore, we opt for several real-world image sequences. All
existing works on MSF recovery [5, 6, 17, 31] employ a similar evaluation methodology.
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Figure 3: Experimental results on the barn owl sequence [9]: (a) input frame number 51; (b) result of the MSF
recovery by NRSfM-Flow (between frames 51 and 52), the colour scheme is the same as in [29]; (c) geometry with
an overlayed scene flow for the frame 51; (d) result of the optical flow between frames 51 and 52 by the TV-L1
method [32]; (e) projection of the recovered 3D motion field into the image plane. In (d) and (e) the colour scheme
is replicated according to [4].

Figure 4: Examples of Poisson reconstructions: (a) shaded geometry from novel viewpoints from the face sequence
(frame 1); (b) textured and shaded geometry from novel viewpoints from the barn owl sequence (frame 1).

The human face sequence. The face sequence was acquired with a Flea FL2-03S2C camera.
It depicts a speaking person; arbitrary translations, facial expressions (non-rigid deforma-
tions) and self-occlusions are present in the sequence which makes it challenging for MSF
recovery. Resolution of the images is 486× 366. Translation resolution is applied in the
preprocessing step. Exemplary results are shown in Fig. 1. Every recovered dense surface
contains 5.6 · 104 points. Results of this experiment are qualitatively similar to the results
on the mouth sequence shown in [5]. Though, several differences can be noticed. First, our
results are less accurate in the areas of the forehead and mouth. The forehead is inherently
poorly textured and correspondences as well as reconstructions are less accurate in this area.
In the area of mouth, the points are interpolated building a smooth surface so that the open-
ing is less recognisable in the shaded Poisson surface. However, both reconstructions exhibit
artefacts associated with correspondences (there are convexities and concavities). Thereby,
our reconstructions are more accurate in the cheek and side areas, see Fig. 4-a. Recall that
our method does not rely on a known camera motion. The length of the sequence is 80
frames. Reducing the length to 40 frames does not result in decay of reconstruction accu-
racy. The runtime of NRSfM-Flow for the face sequence amounts to 805 seconds which is
split amongst preprocessing, correspondence computation and surface recovery as 2, 771 and
32 seconds respectively. Note that we also tried the NRSfM-Flow pipeline without prepro-
cessing on the face sequence. In that case, face reconstructions were unnaturally lengthened.
The barn owl sequence [9]. The sequence was acquired outdoors. It depicts a barn owl per-
forming movement peculiar to a predator bird — jerky head turns followed by periods of a
focused gaze. Due to the movements, observed surfaces deform non-rigidly. The sequence
contains 602 frames in resolution 960×540. There is almost no translation, but there are a
lot of redundant frames. In the preprocessing step, 400 out of 602 frames are removed using
redundancy removal. An exemplary scene flow field for the barn owl sequence can be seen
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in Fig. 3. Number of points per surface amounts to 2 ·105 and reconstructions look realistic.
Scene geometry is correctly explained by rotational and deformational effects, which are es-
pecially well visualised in the supplementary video. See Fig. 4-b for exemplary textured and
shaded Poisson surfaces. The runtimes for this sequence amount to 70, 1504, 6300 seconds
for preprocessing, correspondence computation and surface recovery respectively.
Sintel Flow Dataset [8]. The Sintel Flow Dataset emerged as response to a growing demand

Figure 5: Experimental results on the Sintel Flow Dataset [8]: (a) selected frames from the bandage2 (final)
sequence; (b) whole scene reconstructions with an overlayed scene flow between the corresponding frames on the
left; (c) selected frames from the shaman2 (final) sequence; (d) enlarged groundtruth optical flow between the
corresponding frames on the left; (e) scene flow between the corresponding frames in (c).

for evaluation of optical flow methods in challenging scenarios. It includes multiple monocu-
lar image sequences covering a broad range of realistic scenes varying by type of motion and
deformations, environmental conditions and disturbing effects (motion blur, defocus). We
tested the proposed framework on several Sintel sequences. Fig. 5 depicts selected results on
bandage2 (final) and shaman2 (final) sequences with 50 non-redundant frames in 1024×436
resolution each. With the first one, we tested performance of NRSfM-flow in a complex sce-
nario with multiple non-rigid objects. The result discloses few limitations of the proposed
approach — without segmentation or a shape prior, the variational NRSfM cannot recover
relative depths of individual parts correctly, mainly due to the assumed orthographic camera
(see Fig. 5-a,-b). The relative depths of Sintel and Scales dragon are recovered correctly, but
the background is inserted between them. In the case of additional regions (e.g. when the
Sintel’s hand enters the scene after the frame 20), more depth ambiguities occur. Another
limitation concerns objects’ boundaries — due to the variational nature, NRSfM produces
smooth transitions from the foreground objects to the background. Those limitations define
the open issues in the area of NRSfM. The shaman2 sequence shows a slowly moving hu-
man face in the foreground (Fig. 5-c) and provides optimal conditions for reconstruction with
current NRSfM methods. As a result, we were able to obtain accurate scene flow (Fig. 5-d)
given a foreground-background mask, matching visually well with the groundtruth optical
flow (Fig. 5-e). Both sequences took around 2000 seconds for correspondence computation
and 450 seconds for surface recovery.
Supplementary material contains results on the face, barn owl, bandage2, shaman2 and sev-
eral other sequences (heart [25], music notes and synthetic flag [11]) as videos.
Discussion. Due to MFOF and linear subspace model of the NRSfM, our approach can
handle self- and external occlusions (e.g. occurring in the bandage2 sequence). Using the
proposed framework, it is possible to recover scene flow from monocular image sequences
in scenarios not tackleable by existing MSF methods. Concerning NRSfM, we observe a
favourable side effect. Serendipitiously, MSF allows visualisation of results of a 4D recon-
struction better compared to sequentially showing recovered surfaces. MSF also enables one
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to differentiate between rotational and deformational components in a convenient manner,
analyse properties of NRSfM algorithms effectively, tune parameters and uncover directions
for further algorithmic improvements.
Our framework inherits limitations peculiar to the current NRSfM methods. Most of them
are able to reconstruct scenes which can be easily segmented in background and foreground.
Scenes with multiple segments would preferably need additional preprocessing. Due to the
orthographic camera model, the proposed framework does not recover absolute depths. Nev-
ertheless, the most appropriate NRSfM method may be chosen depending on requirements
(e.g. real-time operation, handling complex composed scenes or support of perspective
views). For instance, the method of Russell et al. [24] allows joint segmentation and re-
construction complex real-world scenes. The NRSfM-Flow framework will directly benefit
from advances in NRSfM methods. As shown experimentally, NRSfM-Flow is not real-time
capable in its current form. However, by adopting sequential processing or iterative schemes,
it will be possible to achieve real-time MSF recovery performance.

5 Conclusions

In this paper, a new framework for scene flow recovery from monocular image sequences
with two preprocessing steps is proposed — the NRSfM-Flow. We intoduce a novel ana-
lytical framework which allows for relating NRSfM and MSF problems in the continuous
domain. We believe that it provides additional insights into both problems and thus will
facilitate development of next generation algorithms. We would like to draw attention to
model based methods for MSF recovery and to emphasize the importance of differential in-
terpretation of NRSfM.
NRSfM-Flow does not prescribe any particular NRSfM algorithm and inherits advantages
and disadvantages of the NRSfM methods. The proposed framework may qualitatively out-
perform existing MSF methods in the ability to capture 3D motion fields of non-rigidly
deforming scenes, since less restrictive assumptions about the scene and camera motion are
made. For making this conclusion, we consider results of MSF recovery shown in literature
so far and experimental results from this paper. One of the central concerns of future work
lies in performing comprehensive comparative studies of existing MSF algorithms. As a next
step, we plan on using the proposed theoretical apparatus to improve variational NRSfM and
to formalize new challenges in the area of NRSfM. NRSfM-Flow will also be used for visu-
alization purposes supporting development of augmented reality and medical applications.
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