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Abstract

This paper presents a novel technique for Shape from Light Field (SfLF), that uti-
lizes deep learning strategies. Our model is based on a fully convolutional network, that
involves two symmetric parts, an encoding and a decoding part, leading to a u-shaped
network architecture. By leveraging a recently proposed Light Field (LF) dataset, we are
able to effectively train our model using supervised training. To process an entire LF we
split the LF data into the corresponding Epipolar Plane Image (EPI) representation and
predict each EPI separately. This strategy provides good reconstruction results combined
with a fast prediction time. In the experimental section we compare our method to the
state of the art. The method performs well in terms of depth accuracy, and is able to
outperform competing methods in terms of prediction time by a large margin.

1 Introduction
In this paper we investigate the problem of estimating depth information for given Light
Field (LF) data. This problem is also referred to as Shape from Light Field (SfLF). A LF
[7, 19] is a 4D function that provides in addition to the spatial information, that corresponds
to the information of a traditional 2D image, also directional information. The additional
directional information includes information about the geometry of the observed scene, and
thus gave rise to interesting applications, like for instance digital re-focusing [13, 22], digital
viewpoint manipulation [22], or depth estimation [6, 10, 12, 14, 27, 28]. All of these tasks
are basically impossible to realize given a single traditional 2D image, that only provides the
spatial intensity information.

A LF is commonly described using the so-called two-plane parametrization. This type of
parametrization defines a ray by the intersection points of two parallel planes. Those planes
are referred to as image plane Ω ⊆ R2 and lens plane Π ⊆ R2. Thus in mathematical terms
the LF is given as

L : Ω×Π→ R, (p,q) 7→ L(p,q) , (1)

where p = (x,y)> ∈Ω and q = (ξ ,η)> ∈Π represent the spatial and directional coordinates.
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Figure 1: Illustration of LF data. (a) shows a sub-aperture image with vertical and horizontal
EPIs. The EPIs correspond to the positions indicated with dashed lines in the sub-aperture
image. (b) shows the corresponding color-coded ground truth disparity field. (c) shows the
result of the proposed model.

There are different ways of visualizing the 4D LF. In this work we use the so-called
Epipolar Plane Image (EPI) representation. In terms of Equation (1) an EPI is obtained by
holding one spatial and one directional coordinate constant. For instance by choosing a
certain y and a certain η we restrict the 4D LF to the 2D function

Σy,η : R2→ R, (x,ξ ) 7→ L(x,y,ξ ,η) , (2)

that defines a horizontal EPI. In a similar way one can also define vertical EPIs. The EPI
representation can be considered as a 2D slice through the 4D LF, and it illustrates the linear
characteristic of the LF space. See Figure 1(a) for an illustration.

In this work we aim at automatically converting EPIs to corresponding disparity im-
ages. Our approach, based on fully Convolutional Neural Networks (CNNs) [20], consists
of processing an EPI with a series of convolution operations, that are able to detect line ori-
entations. Knowing the line orientations allows to reconstruct the geometry of the observed
scene. The kernels used for the involved convolutions are learned by leveraging a LF dataset
that was recently presented in [11]. The proposed data-driven approach has two main advan-
tages compared to prevailing methods: First, it allows to learn necessary heuristics from the
training data to cope with artifacts due to, for instance, occlusion and aliasing. Secondly, the
convolutions can be implemented efficiently on the GPU allowing for fast prediction times.

2 Related Work
One of the most important research topics in LF image processing is the development of
efficient and reliable shape extraction methods. Those methods are the foundation of various
applications, like for instance digital refocusing [13, 22], image segmentation [30], or super-
resolution [2, 29], to name but a few. The main focus of research regarding Shape from
Light Field (SfLF) lies on developing methods to accurately reconstruct the observed scene
at depth discontinuities or occlusion boundaries. For this purpose various approaches have
been proposed, including specialized multi-view stereo techniques [3, 12] and methods based
on an EPI analysis [6, 28]. Wanner and Goldluecke [6, 28] used for example the 2D structure
tensor to measure the direction of each position in the vertical and horizontal EPIs. The
results are then fused using variational methods by incorporating additional global visibility
constraints. In [12] Heber et al. proposed a variational multi-view stereo method based on
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a technique called Active Wavefront Sampling (AWS). Tao et al. [27] proposed a fusion
method that uses correspondence and defocus cues. Chen et al. [3] introduced a bilateral
consistency metric on the surface camera to indicate the probability of occlusions, which was
further used for LF stereo matching. Heber and Pock [10] proposed a variational method, that
shears the LF by applying a low-rank assumption, where the depth information is provided
by the amount of shearing. Jeon et al. [14] proposed an algorithm for SfLF, that utilizes
phase shift based subpixel displacements. In [11] Heber and Pock presented a method for
SfLF that applies a conventional CNN in a sliding window fashion. Up to this point deep
learning techniques were barely used in LF image processing. Utilizing trained models for
SfLF is an interesting idea to address certain limitations of previous methods. On the one
hand a trained model has the ability to learn how to handle occlusion and aliasing artifacts,
and on the other hand a CNN also allows faster computation times.

In this paper we seize ideas presented in [11]. Furthermore this work also builds upon
fully convolutional networks [20] and up-convolution-based approaches [4, 20, 32], i.e. the
proposed network architecture consists of a contracting and an expanding path, that involve
only convolutional layers. The former path compresses the information and simultaneously
captures context, and the latter path extracts the information and up-samples it to the original
size. The expanding path is more or less symmetric to the contracting path, yielding a u-
shaped architecture, that can be trained in an end-to-end scheme.

3 Contribution

The proposed method is inspired by the method of Heber and Pock [11], that uses a con-
ventional CNN in a sliding window fashion to predict depth information. They showed that
CNNs have a large capacity to learn from data to predict the orientation of the lines in the
EPIs. However, due to the sliding window approach, their method suffers from considerable
high computational costs. Compared to [11] we were able to significantly reduce the compu-
tation time by predicting complete EPIs at once using u-shaped networks. Besides drastically
reducing the prediction time the proposed network architecture also allows to reduce the er-
rors in homogeneous regions, because the proposed model can overcome the patch-nature
of the network proposed in [11]. Our experiments demonstrate that the proposed method is
able to predict an entire 4D disparity field within a few seconds. Moreover, due to the fact
that our network architecture does not include any fully connected layer, our method also
allows to process LFs with varying resolutions.

4 Methodology

In this section we describe the methodology of the proposed approach. The success of
the proposed CNN depends on leveraging a set of recent improvements, that include up-
convolutions [20], no explicit pooling [26], and the Adam optimization method [15]. The
section starts with a short introduction to CNNs, followed by the description of the used
u-shaped network architecture. At the end of the section we provide details regarding the
network training and the leveraged dataset.

Convolutional Neural Networks. In the late 1980s, Yann LeCun et al. [17, 18] intro-
duced a special type of multi-layer Neural Networks (NNs), where weights are shared across
layers. By sharing the weights they were able to resemble an important operation in signal
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Figure 2: Illustration of the proposed u-shaped network architecture. The encoding and
decoding parts of the network are highlighted in purple and green, respectively. The pinhole
connections are marked in blue.

processing known as convolution, leading to the CNN architecture. A CNN consists of sev-
eral layers, where the different layers are connected such that layer l creates the input for
layer l +1. Layer l can be seen as a multi-channel image of size Hl×Wl×Cl , where Hl , Wl
and Cl denote image height, image width, and number of channels of the lth layer, respec-
tively. The first and last layer are called input and output layers, respectively. Hence their
size also corresponds to the input size and to the desired output size. Successive layers are
connected via a convolutional mapping with an additional additive bias term, i.e. each chan-
nel of the layer l +1 is defined as a convolution with a kernel of size kh× kw×Cl followed
by the addition of a constant bias, where kh and kw denote the kernel width and height.

Yann LeCun [18] introduced CNNs trained in a supervised manner via back-propagation.
Since Krizhevsky et al. [16] utilized CNNs effectively for the task of large-scale image clas-
sification the popularity of CNNs or deep learning techniques increased drastically in the
computer vision literature. Nowadays CNNs are especially popular in image classification
and objection recognition [9, 24]. The entire field of deep learning flourishes with innova-
tions, one after another. However, the exploration of 4D LF data by CNNs is still limited.

Network Architecture. In contrast to methods that use natural images we are not able
to exploit existing trained networks, i.e. we opt for designing our network entirely from
scratch. However, not relying on pre-trained networks also allows to better adapt the network
structure to the problem at hand. The proposed network is a fully convolutional network
consisting of a contracting part and an expanding part. The first part acts as an encoder,
that spatially compresses the image and thus reduces the input data to an essential feature
representation. The bottom part processes the essential features, before the expanding part
of the network decodes the simple feature representation to an output disparity image. The
encoding and decoding parts of the network are basically symmetric leading to an u-shaped
network architecture. An overview of the network structure is depicted in Figure 2, where the
encoding and decoding parts of the network are highlighted in purple and green, respectively.

The u-shaped network uses down and up-convolutional layers for the encoding and de-
coding part, respectively. A down-convolution layer is obtained by increasing the stride of
the convolution, i.e. it only computes a subset of all positions. This decreases the spatial
resolution of the following layer, and simultaneously increases the spatial support of all sub-
sequent layers. To increase the image resolution again we use so-called up-convolutional lay-



HEBER, YU, POCK: U-SHAPED NETWORKS FOR SHAPE FROM LIGHT FIELD 5
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Figure 3: Illustration of the used data augmentation. The figure shows the original sample to
the top left. The different columns represent horizontally and vertically flipped samples, and
the different rows illustrate random brightness and color changes.

ers. Those layers use fractional strides to increase the resolution. Note that in the proposed
u-shaped network we use the down and up-convolutional layers to decrease and increase
only the spatial direction of the given EPI.

The basic building block of the overall network is a convolutional layer followed by
a Rectified Linear Unit (ReLU) non-linearity [21], σ(x) = max(0,x). We combine two
convolutional layers to one level. For the convolutional layers within one level, we use
padding to compensate for the kernel size. This ensures that the output of one level has
the same size as the input. In the first part of the network we use three of those levels,
where we use down-convolutional layers after each level to increase the spatial support of
subsequent layers. At each down-sampling step we double the number of feature channels,
except for the last level. The bottom part of the network consists of another level, that
processes the compressed data. The decoding part of the network uses again three levels, but
now we utilize up-convolutional layers before each level. Hence we up-convolve the whole
coarse feature maps allowing to transfer high-level information to the fine prediction, and
finally increase the image resolution back to the original size. All the involved convolutions
use kernels of size 3× 5, except for the down and up-convolutional layers that use 3× 3
kernels. We also use so-called pinhole connections between the encoding and decoding
part of the network, i.e. we concatenate the input of each level in the decoding part with
the corresponding output feature map from the encoding path. We want to emphasis that
the network structure involves only convolutional layers, i.e. we are not using any fully
connected layers nor any pooling operations. A main advantage of avoiding fully connected
layers is the ability to process EPIs of arbitrary resolutions.

Dataset. In order to train the proposed u-shape network a large amount of labeled training
data is needed. Fortunately, we were allowed to use the synthetic dataset proposed in [11].
This dataset was generated using POV-Ray [23] and comes with highly accurate ground
truth depth fields. Moreover the dataset also provides a random scene generator that allows
to generate the desired amount of LFs. We render 200 LFs with a spatial resolution of
640× 480 and a directional resolution of 11× 11, out of which 150 are used to generate
training data and 50 are used for testing.

Data Augmentation. Data augmentation [5, 16] is a common way to combat overfitting
and to improve the generalization of the trained model. It basically allows the model to
become invariant to certain predefined image deformations. We perform excessive data aug-
mentation, including brightness changes, color changes, and additive Gaussian noise. We
also flip the EPIs horizontally and vertically, where each flipping results in a sign change
of the disparity map. Our augmentation procedure results in 8 times the original amount of
image pairs. Although they are heavily correlated they allow to increase the robustness of
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the trained model. Figure 3 provides some augmentation examples.

Network Training. While NNs learned with back-propagation have been around for sev-
eral decades [25], only recently the computational power and data has been available to fully
exploit this training technique [16]. In order to train the proposed u-shaped network we use
the tensorflow framework [1], where we use Adam [15] as the optimization method to min-
imize the `1 loss. Out of the 150 rendered LFs used for training we extract 20e3 EPIs. The
extracted samples are then increased eightfold using data augmentation. To monitor overfit-
ting we use a test set of 10e3 samples. In deep networks with many convolutional layers a
good initialization of the weights is extremely important. Ideally the weights in the network
should be initialized such that each feature map has approximately unit variance. This can
be achieved by drawing the initial weights of a given node from a Gaussian distribution with
standard deviation

√
2/N, where N denotes the number of incoming nodes [8]. After ini-

tializing the weights as suggested in [8] we train our model for 400 epochs, where we use a
mini-batch size of 28 samples.

5 Experiments
We have preformed an extensive analysis of our proposed model. We conducted synthetic
and real world experiments. For the synthetic evaluation we used a recently presented LF
dataset [11], where all LF scenes within the dataset have a directional resolution of 11×11,
and a spatial resolution of 640× 480. For the real world evaluation we used a LF captured
with a Lytro camera as well as LFs from the Stanford Light Field Archive (SLFA). The used
Lytro data provides a spatial resolution of 328× 328 and a directional resolution of 7× 7.
LFs within the SLFA are captured using a multi-camera array [31] and contain 289 views on
a 17×17 grid. We trained a u-shaped network based on the description in Section 4, where
we use the same model for all the presented experiments. To obtain the final result we predict
the horizontal and vertical EPIs and take the pointwise average of the two predictions.

We compare our model against the following state-of-the-art SfLF methods [10, 11, 14,
27, 28]. The method by Wanner and Goldluecke [28] analyzes the EPIs using the 2D struc-
ture tensor, before combining the obtained information using a variational framework. Tao
et al. [27] proposed a fusion method that uses correspondence and defocus cues. Both lo-
cal cues are combined to a global depth estimate by using a Markov Random Field (MRF)
model. Heber and Pock [10] proposed a variational multi-view stereo model based on low
rank minimization. This model includes a matching term based on Robust Principal Com-
ponent Analysis (RPCA), that can be interpreted as an all vs. all matching term. Jeon et al.
[14] proposed an algorithm for SfLF, that utilizes phase shift based subpixel displacements.
Besides the use of the phase shift theorem the algorithm is quite straightforward. They first
calculate various cost volumes, that are processed using edge-preserving filtering, before
extracting a disparity map based on the winner-takes-all strategy. To correct the obtained
disparity map in weak textured regions they proceed with a multi-label optimization using
graph cuts. At the end they refine the discrete disparity map to a continuous one using an
iterative refinement scheme. In [11] Heber and Pock presented the first attempt to predict
depth information for given LF data by utilizing deep learning strategies. Their network was
trained in a sliding window setup to predict for each imaged scene point the orientation of the
corresponding 2D hyperplane in the domain of the LF. This corresponds to estimating the
line orientations in the horizontal and vertical EPIs simultaneously. They also use a 4D reg-
ularization step to overcome prediction errors in textureless or uniform regions, where they
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LF ground truth Wanner [28] Tao [27]

Heber [10] Jeon [14] Heber [11] (CNN) proposed

Figure 4: Comparison to state-of-the-art methods on the synthetic POV-Ray dataset. The
figure shows the center view of the LF, the color-coded ground truth, the results for five
state-of-the-art SfLF methods [10, 11, 14, 27, 28], followed by the result of the proposed
method.

use a confidence measure to gauge the reliability of the estimate. This additional regulariza-
tion step is not used in the following comparison, because such a post processing step can
also be applied to the prediction of the proposed model. The method of Heber and Pock [11]
works well but has drawbacks due to the sliding window scheme. First, the per-patch nature
disallows to account for global output properties, and second, it leads to higher computa-
tional costs compared to the proposed approach. In what follows we will first provide some
synthetic evaluations before presenting qualitative real world results.

Synthetic Evaluation. We start with the synthetic evaluation. Figure 4 provides a compar-
ison of different state-of-the-art methods. Note that for all methods that rely on precomputed
cost volumes [14, 27, 28], the number of labels is set to 200. Moreover we also set the
necessary known disparity range for those methods based on the ground truth data. We can
see that, despite the complexity of the scene, our model is able to predict accurate disparity
results, that are on par with the competing methods. When comparing the results of the pro-
posed model to the predictions obtained by the conventional CNN used in [11], we see that
the proposed model provides better results in textureless regions. Also note that the proposed
model is barely effected by depth discontinuities.

Quantitative results in terms of RMSE and MAE are presented in Table 1. The table also
shows the percentage of pixels with a relative disparity error larger than 0.2% and 0.5%.
Besides the various disparity errors the table also provides the computation times for esti-
mating a disparity map for one sub-aperture view of the LF. Moreover we also indication
if a GPU implementation was used or not. The presented results represent the average over
the 50 LFs used for testing. We observe that the proposed model was able to accurately
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Wanner [28] Tao [27] Heber [10] Jeon [14] Heber [11]
(CNN)

proposed

RMSE 3.91 2.33 2.50 2.49 1.87 0.80
MAE 2.94 1.06 0.79 0.75 1.13 0.35
0.5% 22.00 16.32 8.47 9.64 17.96 7.34
0.2% 35.22 28.48 13.20 16.46 31.61 14.76
Time 3min 18s 23min 4s 4min 44s 2h 12min 30s 35s 2s
GPU 3 7 3 7 3 3

Table 1: Quantitative results for various SfLF methods averaged over 50 synthetic LFs. The
table provides the RMSE, MAE, the percentage of pixels with a relative disparity error larger
than 0.2% and 0.5%, and the computational time of the method.

learn the characteristics of this dataset. Furthermore, we also see that the proposed method
is significantly better than all the competing methods in terms of the computation time. The
presented method takes about 15 seconds to compute the disparity field for the entire LF (i.e.
121 views).

Real World Evaluation. We continue with the real world evaluation. Figure 5 provides a
qualitative comparison to the methods by Tao et al. [27], Heber and Pock [10], and Jeon et al.
[14]. To be able to compute results for the methods by Jeon et al. [14] and Tao et al. [27] in
a reasonable time, it was necessary to reduce the directional resolution of the data to 11×11
and the number of labels to 75. The results show that although the proposed model was not
trained on this dataset, nor have we performed any fine-tuning for this dataset, it allows to
predict depth maps that are on par with the competing methods. However, the results are not
perfect because the model produces streaking artifacts in homogeneous background regions.
The main benefit of the proposed method is again the computational time of a few seconds.
Also keep in mind that we are not using any post-processing, the results shown in the figure
are the raw network predictions.

In Figure 6 we also present results for a LF captured with a Lytro camera. Note, that
the Lytro data includes a significant amount of noise and outliers, for which the proposed
u-shape network was not trained for. Nevertheless, the proposed model is able to predict a
reasonable disparity field with clear depth discontinuities.

6 Conclusion

We have presented a novel end-to-end system for SfLF. Our model is based on stacked
convolution operations, that result in a high efficiency. The model comprises an encoding
and a decoding part. Those parts are symmetric resulting in a u-shaped network architecture.
We avoided fully connected layers thus our model allows to process LFs of any resolution.
Our results show that the proposed u-shaped network is able to predict disparity fields that
are on par with the state of the art while maintaining a low computation time. We believe
our proposed approach is an important step towards realtime LF image processing. We also
want to emphasize that the results shown in the experimental section are the raw network
predictions without any additional post-processing. Investigating suitable methods for post-
processing the network output is left for future work.
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22min 50s 6min 13s 2h 9min 42s 4s

32min 45s 8min 12s 2h 55min 34s 5s

31min 58s 8min 43s 2h 44min 40s 5s

36min 60s 9min 40s 3h 9min 1s 5s

LF Tao [27] Heber [10] Jeon [14] proposed

Figure 5: Qualitative comparison for LFs from the SLFA. The figure shows from left to right
the center view of the LF, followed by the results for the methods proposed by Tao et al.
[27], Heber and Pock [10], and Jeon et al. [14]. The results to the right correspond to the
proposed method.

3min 10s 1min 8s 34min 32s 1s

LF Tao [27] Heber [10] Jeon [14] proposed

Figure 6: Qualitative comparison for a LF captured with a plenoptic camera. The figure
shows from left to right the center view of the LF, followed by the results for the methods
proposed by Tao et al. [27], Heber and Pock [10], and Jeon et al. [14]. The result to the right
corresponds to the proposed method.
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