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Abstract

Estimating the shape and appearance of a three dimensional object from flat images is
a challenging research topic that is still actively pursued. Among the various techniques
available, Photometric Stereo (PS) is known to provide very accurate local shape recovery,
in terms of surface normals. In this work, we propose to minimise non-convex variational
models for PS that recover the depth information directly. We suggest an approach based
on a novel optimisation scheme for non-convex cost functions. Experiments show that
our strategy achieves more accurate results than competing approaches.

1 Introduction
Photometric 3D-reconstruction techniques are often formulated as inverse problems: given an
image I, one seeks a depth map z that best explains the observed grey levels of the data. To
this end we use the image irradiance equation (IIE) I(u,v) =R(z(u,v);s,ρ) where (u,v) ∈Ω
represents pixel coordinates over the reconstruction domain Ω⊆R2. This model describes the
interactions between the surface z and the lighting s; ρ representing the reflectance parameters
(e.g. the albedo), which can be either known or considered as hidden unknown parameters.
For the sake of simplicity, we will consider only Lambertian reflectance without shadows,
and we assume that the lighting of a photographed scene is directional and known.

The Shape-from-Shading (SfS) problem consists in solving the IIE over Ω. Unfortunately,
this is an ill-posed problem, even with simple reflectance models such as Lambertian re-
flectance with known albedo. To eliminate the inherent ambiguities of classic SfS, several
images Ii, i ∈ {1, . . . ,m}, can be considered under different lightings si, i ∈ {1, . . . ,m}. PS
consists in finding a depth map z that best explains all IIEs:

Ii(u,v) =R(z(u,v);si,ρ), i ∈ {1, . . . ,m} (1)

In this work, we aim at obtaining the solution z of the PS problem, see Figure 1 for an account.
We will show that estimating the optimal solution necessarily involves non-trivial optimisation
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Example input image
for PS

ER = 13.78
Classic PS with integration

ER = 3.50
Our method

Figure 1: From a set of m≥ 3 images (cf. left), classic PS provides an albedo and a normal
map which best explain the input images in the sense of a local, pointwise estimation. In
a second step, the smooth depth map is estimated by integration. Yet, the final surface is
not the best explanation of the images, as indicated by the reprojection error ER (c.f. energy
in (5)) (middle). We display this using white for 2.5 · 10−3 and black for zero. Instead of
this local procedure, we propose to minimise the reprojection criterion in terms of the depth
and the albedo, through global non-convex optimisation. Not only the images are better
explained (right), but we also demonstrate that the 3D-reconstruction results are improved (cf.
Section 4).

methods, even with the simplest models for the reflectance functionR (Lambertian, without
shadows) and the deviations from this model (additive, zero-mean, Gaussian noise). We
propose a numerical framework to approximate an optimal solution, which can be used
to refine classic PS results. Our approach relies on matrix differential theory for analytic
derivations and on recent developments in non-convex optimisation.

2 Construction of our method and related work
Following Woodham [27] it is known that, provided m≥ 3 input images and non-coplanar
calibrated lightings are given, all surface normals can be estimated without ambiguity. In
addition, the reflectance parameters (e.g. the albedo) can also be estimated. This is usually
achieved by minimising the difference between the given data (the input images) and the
reprojection according to the estimated normal and albedo:

min
n,ρ

{
E local
R (n,ρ; I) :=

1
m ∑∑

(u,v)∈Ω

m

∑
i=1

Φ
(
Ii(u,v)−R

(
n(u,v);si,ρ(u,v)

))
}

(2)

with an estimator Φ. As a result, one obtains an approximation of the normal n(u,v) and the
albedo ρ(u,v) at each position (u,v). These estimates are the optimal local explanations of
the image, in the sense of the estimator Φ. Yet, the estimated normal field is in general not
integrable. Thus, the depth map that can be obtained by integration is not an optimal image
explanation, but only a smooth explanation of the noisy normal field, cf. Figure 1.

Instead of this pointwise joint estimation of the normal and the albedo, it is possible to
employ photometric ratios: dividing the i-th by the j-th IIE in (1), one obtains a homogeneous
linear system in each normal vector that does not depend on the albedo. The least squares
estimate of Wu et al. [29] yields the Maximum Likelihood (ML) estimate if the ratios are
corrupted by additive, zero-mean, Gaussian noise. However, any noise hypothesis should be
made on the images, and not on their ratios. Since the ratio of two Gaussian random variables



HOELTGEN ET AL.: NON-CONVEX VARIATIONAL PHOTOMETRIC STEREO 3

follows a Cauchy distribution [7], approaches based on ratios only provide the best linear
unbiased estimate (BLUE), which is not the optimal (efficient) estimator. Besides, there is no
reason why the estimated normal field should be integrable.

As indicated, the normal field computed by this type of local PS approaches does not need
to be integrable. Hence, the integration task is usually formulated as another optimisation
problem, aiming at minimising the discrepancy between the estimated normal field and that
of the recovered surface. Assuming orthographic projection, the relation between the normal
n(u,v) and the depth z(u,v) is given by:

n(u,v) :=
1√

‖∇z(u,v)‖2 +1
[−∇z(u,v), 1]> where ∇z = (zu,zv)

> (3)

Then the best smooth surface explaining the computed normals can be estimated either by
solving (3) by means of an eikonal-type equation [1], or by solving the variational problem:

min
z

{
Einteg (z;n) := ∑∑

(u,v)∈Ω
Ψ

(∥∥∥∥∇z(u,v)−
[
−n1(u,v)/n3(u,v)
−n2(u,v)/n3(u,v)

]∥∥∥∥
2
)}

(4)

where Ψ is again some estimator function (see [4, 6] for some discussion).
One may realise that, at this stage of the process chain of PS with integration, the images

are not considered anymore. Thus, the final surface is in general not optimal in the sense of
the reprojection criterion. Regularising the normal field before integration [23, 30] may also
ensure integrability, but since such methods only use the normal field, and not the images,
they can obviously not guarantee optimality with respect to the reprojection either.

Global PS approaches solve the latter problem as they represent a way to ensure that
the recovered surface is optimal with respect to the reprojection criterion. Moreover, it is
possible to solve the system (1) directly in terms of the depth [3]: this ensures both that the
recovered surface is regular, and that it is optimal with respect to the reprojection criterion,
calculated from the depth map z and not from a non-integrable estimate of its gradient. Some
PDE-based PS approaches have been recently proposed, and were shown to ease the resolution
in particularly difficult situations such as pointwise lightings, specular reflectance [26] and
multi-view PS [5]. To ensure robustness, such methods can be coupled with variational
methods [13, 22, 25]. In other words, the criterion which should be considered for ensuring
optimality of a surface reconstruction by PS is not the local criterion (2), but rather:

min
z,ρ

{
ER (z,ρ; I) :=

1
m ∑∑

(u,v)∈Ω

m

∑
i=1

Φ
(
Ii(u,v)−R

(
z(u,v);si,ρ(u,v)

))
}

(5)

A theoretical analysis of the choice Φ(x) = |x|, in the continuous setting, can be found in [2].
Numerical resolution methods based on proximal splittings were more recently introduced
in [21]. Yet, this last work relies on an “optimise then discretise” approach which would
involve non-trivial oblique boundary conditions (BC), replaced there for simplicity reasons
by Dirichlet BC. Obviously, this represents a strong limitation which prevents working with
many real-world data where this BC is rarely available.

The normal vectors ni defined as in (3) and involved in the reflectance functionR have
unit length. As a consequence, the optimisation problem (5) is non-linear and non-convex.
The ratio procedure described earlier can be used: it simultaneously eliminates the albedo
and the non-linear terms, cf. [5, 22, 25, 26] and obviously removes the bias due to non-
integrability. But let us recall that it is only the BLUE estimate, and also not the optimal one.
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To guarantee optimality, it is necessary to minimise the non-linear, non-convex energy, i.e.
without employing ratios.

Solving (5) is a challenging problem. Efficient strategies to find the sought minimum
are scarce. Recently Ochs et al. [17] proposed a novel method to handle such non-convex
optimisation problems, called iPiano. A major asset of the approach is the extensive con-
vergence theory provided in [16, 17]. Because of this solid mathematical foundation we
explore the iPiano approach in this work. The scheme makes explicit use of the derivative of
the cost function, which in our case involves derivatives of matrix-valued functions, and we
will employ as a technical novelty, matrix differential theory [11, 12] to derive the resulting
scheme.

3 Non-convex discrete variational model for PS
In this section we describe details of our discrete framework for estimating both the depth
and the (Lambertian) reflectance parameters over the domain Ω.

3.1 Assumptions on the PS model
We assume m ≥ 3 grey level images Ii, i ∈ {1, . . . ,m}, are available, along with the m
lighting vectors si ∈R3, assumed to be known and non-coplanar. We also assume Lambertian
reflectance and neglect shadows, which leads to the following well-known model:

R
(
n(u,v);si,ρ

)
:= ρ (u,v)

〈
si ,n(u,v)

〉
, (u,v) ∈Ω, i = 1, . . . ,m (6)

where ρ(u,v) is the albedo at the surface point conjugated to pixel (u,v), considered as a
hidden unknown parameter. Let us note that real-world PS images can be processed by
low-rank factorisation techniques in order to match the linear reflectance model (6), cf. [28].

We further assume orthographic projection, hence the normal n(u,v) is given by (3). Then
the reflectance model becomes a function of the depth map z:

R
(
z(u,v);si,ρ

)
:=

ρ (u,v)√
‖∇z(u,v)‖2 +1

〈
si , [−∇z(u,v),1]>

〉
, (u,v) ∈Ω, ∀i (7)

Eventually, we assume that the images Ii differ from this reflectance model only up to an
additive, zero-mean, Gaussian noise. The ML estimator is thus the least-squares estimator
Φ(x) = 1

2 x2, and the cost function in the reprojection criterion (5) becomes:

ER (z,ρ; I) :=
1

2m ∑∑
(u,v)∈Ω

m

∑
i=1

(
Ii(u,v)− ρ(u,v)√

‖∇z(u,v)‖2+1

〈
si , [−∇z(u,v),1]>

〉)2

(8)

3.2 Tikhonov regularisation of the model
Our energy in (8) only depends on the gradient ∇z and not on the depth z itself. As a
consequence, solutions can only be determined up to an arbitrary constant. As a remedy we
follow [22] and introduce a reference depth z0, thus regularising our initial model with a
zero-th order Tikhonov regulariser controlled by a parameter λ > 0:

min
z,ρ

{
ER (z,ρ; I)+

λ
2 ∑∑

(u,v)∈Ω
(z(u,v)− z0(u,v))

2

}
(9)
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In practice, λ can be set to any small value, so that the minimiser of (9) lies as close as
possible to a minimiser of (8). In all our experiments we set λ := 10−6 and z0 as the classic
PS solution followed by least-squares integration.

3.3 Discretisation
As already mentioned, “optimise then discretise” approaches such as [21] for solving (9)
involve non-trivial BC. Hence, we prefer a “discretise then optimise”, finite dimensional
formulation of the variational PS problem (9). In our discrete setting we are given m images
Ii, i ∈ {1, . . . ,m}, with n pixels labelled with a single index j running from 1 to n. We rewrite
(9) in the following way:

argmin
z,ρ∈Rn

{
1

2m ∑
j

∥∥∥∥I j− ρ j√
‖∇z j‖2

+1
S
[
−∇z j

1

]∥∥∥∥
2

+
λ
2

∥∥z j− z0 j
∥∥2
}

(10)

where I j := [I1
j , . . . , I

m
j ]
> ∈ Rm is the vector of intensities at pixel j, ∇z j represents again a

finite difference approximation of the gradient of z at pixel j, and S = [s1, . . . ,sm]> ∈ Rm,3 is
a matrix containing the stacked m lighting vectors si.

We remark that the matrix S can be decomposed into two sub-matrices S` and Sr of
dimensions m×2 and m×1 such that S :=

[
S` Sr

]
, and so that

S
[
−∇z j

1

]
=−S`∇z j +Sr (11)

Let us also introduce a 2n× n block matrix M, such that each block M j is a 2× n matrix
containing the finite difference coefficients used for approximating the gradient:

M :=
[
M1 . . . Mn

]> ∈ R2n,n, M jz≈ ∇z j ∈ R2 (12)

We further introduce the following aliases:

A j(z,ρ) :=− ρ j√
1+
∥∥M jz

∥∥2
S` ∈ Rm,2, b j(z,ρ) := I j−

ρ j√
1+
∥∥M jz

∥∥2
Sr ∈ Rm (13)

and stack them, respectively, in a block-diagonal matrix and a vector:

A(z,ρ) :=




A1(z,ρ)
. . .

An(z,ρ)


 ∈ Rmn,2n, b(z,ρ) :=




b1(z,ρ)
...

bn(z,ρ)


 ∈ Rmn (14)

Using these notational conventions the task in (10) can be rewritten compactly as

argmin
z,ρ∈Rn

{
1

2m
‖A(z,ρ)Mz−b(z,ρ)‖2

2
︸ ︷︷ ︸

:= f (z,ρ)

+
λ
2
‖z− z0‖2

2
︸ ︷︷ ︸

:=g(z)

}
(15)

which is the discrete PS model we propose to tackle in this paper. Let us remark that this
model can be easily extended to include more realistic reflectance [10] and lighting [18]
models, as well as more robust estimators [9]: this only requires to change the definition of f ,
which stands for the global reprojection error ER.
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3.4 Alternating optimization strategy
In order to ensure applicability of our method to real-world data, the albedo ρ cannot be
assumed to be known. Inspired by the well-known Expectation-Maximisation algorithm, we
treat ρ as a hidden parameter, and opt for an alternating strategy which iteratively refines the
depth with fixed albedo, and the hidden parameter with fixed depth:

z(k+1) = argmin
z

{
f
(

z,ρ(k)
)
+g(z)

}
,ρ(k+1) = argmin

ρ

{
f
(

z(k+1),ρ
)
+g
(

z(k+1)
)}

(16)

starting from z(0) = z0 and taking as ρ(0) the albedo obtained by the classic PS approach [27].
Of course, the choice of a particular prior z0 has a direct influence on the convergence rate
of the algorithm. The proposed scheme globally converges towards the solution even with
a trivial prior z0 ≡ constant, but convergence is very slow in this case. Thus the proposed
method should be considered as a post-processing technique to refine classic PS approaches,
rather than as a standalone PS method.

Now, let us comment on the two optimisation problems in (16). Updating ρ amounts to a
linear least-squares problem which admits the following closed-form solution at each pixel:

ρ(k+1)
j =

√
1+‖M jz(k+1)‖2

m

∑
i=1

Ii
js

i>
[
−M jz(k+1)

1

]/ m

∑
i=1

(
si>
[
−M jz(k+1)

1

])2

(17)

The computation of z(k+1) is considerably harder, and it is dealt with below.

3.5 The iPiano algorithm
We will now formulate the iPiano algorithm for our problem. Since the albedo is fixed for
the purpose of the corresponding optimisation stage, we denote f (z) = f (z,ρ(k)). The iPiano
algorithm seeks a minimiser of

min
x∈Rn
{ f (x)+g(x)} (18)

where g : Rn→ R is convex and f : Rn→ R is smooth. What makes iPiano appealing is the
fact that g must not necessarily be smooth and f is not required to be convex. This allows
manifold designs of novel fixed-point schemes. In its general form it evaluates

proxαg

(
z(k)−α∇ f (z(k))+β (z(k)− z(k−1))

)
(19)

where the proximal operator is given by

proxαg (z) := argmin
x

{
1
2
‖x− z‖2 +αg(x)

}
(20)

and which goes back to Moreau [15]. Before we can define the final algorithm we also need
to approximate the gradient of f .

3.6 Gradient of f

In our setting the main difficulty is that the matrix A depends on our sought unknown z. In
order to state a useful representation of this gradient we have to resort to matrix differential
calculus. We refer to [11, 12, 19, 20] for a more in-depth representation. A key notion is the
definition of the Jacobian of a matrix, which can be obtained in several ways. We follow [11].
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Definition 1 (Jacobian of a Matrix Valued Function). Let A be a differentiable m× p real
matrix function of an n×q matrix X of real variables, i.e. A = A(X). The Jacobian matrix of
A at X is the mp×nq matrix

D [A] (X) :=
dvec(A(X))

d(vecX)>
(21)

where vec(·) corresponds to the vectorisation operator described in [8] (Definition 4.29).
This operator stacks column-wise all the entries from its matrix argument to form a large
vector.

Here, differentiability of a matrix valued function means that the corresponding vectorised
function is differentiable in the usual sense. By this definition the computation of a matrix
Jacobian can be reduced to computing a Jacobian for a vector valued function. In extension
of this definition one can easily derive matrix-valued versions of the standard product- and
chain-rule from calculus (cf. Theorem 7 and 9 in [11]). Let us state directly our main result,
details on its proof can be found in the supplementary material.

Theorem 1. Using matrix differential theory we obtain for the gradient of f :

∇ f (z) =
1
m

(
A(z)M+

(
(Mz)>⊗ Inm

)
D[A](z)−D[b](z)

)>
(A(z)Mz−b(z)) (22)

Here, Inm represents the identity matrix in Rnm,nm and the symbol ⊗ stands for the Kronecker
matrix product [8] (Definition 4.2.1).

Equation (22) is computationally expensive to evaluate. If run times are an important
criterion, then one may use the following approximation, motivated by (22):

∇ f (z)≈ 1
m
(A(z)M)> (A(z)Mz−b(z)) (23)

We conjecture that this is an efficient way to approximate ∇ f (z) for computations. In our
numerical experiments, we used (23) and could not observe any deficiencies.

Our final algorithm for the computation of the depth and the albedo is given in Algorithm 1.
For our experiments, the iPiano stopping criterion was set to a test on the relative change in
the objective function (< 10−8), and the global stopping criterion to a maximum number of
iterations. For the step sizes we employed the “lazy backtracking” algorithm as in [17].

4 Numerical Evaluation
Figure 2 presents the test data that we use in this paper. It consists of five real-world scenes
captured under 20 different known illuminants si, (i = 1, . . . , 20), provided in [24]. In our
experiments, we used m = 20 out of the original 96 RGB images, which we converted to grey
levels. Two of the sets present diffuse reflectance (Cat and Pot), while two other exhibit broad
specularities (Bear and Buddha) and one presents sparse specular spikes (Ball). Since the
ground truth normals are also provided in [24], the estimated normals can be computed from
the final depth map according to (3), and compared to the exact ground truth. For evaluation,
we indicate the Mean Angular Error (MAE) (in degrees) over the reconstruction domain
Ω. Let us consider the Cat data set in some detail, as it consists in a diffuse scene that fits
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Algorithm 1: Inertial Proximal Point Algorithm for Photometric Stereo
Choose prior z0 (classic PS), prior weight λ (10−6), β ∈ [0,1[ (0.5) and c > 0 (0.01)
Initialise z(0) (z0) and ρ(0) (classic PS), and set k = 0
repeat

Set z̃(0) = z̃(−1) = z(k) and l = 0
repeat

Lipschitz constant L estimation by lazy backtracking

Step size update: α(l) = 2 1−β
c+L

Depth update: z̃(l+1) = proxα(l)g

(
z̃(l)−α(l)∇ f

(
z̃(l)
)
+β

(
z̃(l)− z̃(l−1)

))

l = l +1
until iPiano convergence
z(k+1) = z̃(l+1)

Albedo update using Eq. (17)
k = k+1

until global convergence

Cat Pot Bear Buddha Ball

Figure 2: Test data (brightened and cropped to enhance visualisation) and 3D-reconstructions
obtained after 500 iterations k of Algorithm 1.

rather well our assumptions. We let our algorithm run for 1000 iterations k (approx. 1 hour
on a recent i7 processor, using non-optimised Matlab code), and study the evolution of two
criteria: the reprojection error, whose minimum is sought by our algorithm; and the MAE,
which indicates the overall accuracy of the 3D-reconstruction, cf. the two left images within
Figure 3. The displayed convergence graphs indicate that each iteration from Algorithm 1 not
only decreases the value of the objective function f +g (which is approximately equal to the
reprojection error ER = f ), but also the MAE. This confirms our conjecture that finding the
best possible explanation of the images yields more accurate 3D-reconstructions. In the other
two graphs in Figure 3 we study the results of our method compared to other PS strategies
based on least-squares: the classical PS framework [27] consisting in estimating in a least
squares sense the normals and the albedo, and integrating them afterwards, and the recent
differential ratios procedure from [22, 25]. The latter allows direct recovery of the depth, but
on the other hand it changes the objective function. Both other approaches rely on linear least
squares: they are thus by far faster than the proposed approach (here, a few seconds, versus a
few minutes with ours). Yet, in terms of accuracy, these methods are outperformed by our
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Figure 3: The Cat experiment (from left to right): (a) objective function f +g as a function
of the iterations count k; (b) MAE between the reconstructed surface and the ground truth;
(c) reprojection error for competing methods for increasing noise levels (we indicate the
standard deviation of the additive, zero-mean Gaussian noise, as a percentage of the maximum
intensity); (d) ditto for increasing numbers of input images, with 0.1 noise level.

Table 1: Reconstruction errors (MAE, in degrees) obtained for preprocessed input images
using the approach from [28]. For fair comparison, the MAE for classic PS is calculated on
the final surface, i.e. using the normals calculated by finite differences from the final depth
map, rather than the (non-integrable) normals estimated in the first step. Regarding the ratio
procedure, we applied the code from [22] directly on the grey level data.

Cat Pot Bear Buddha Ball

Classic PS [27] 8.83 8.91 7.01 14.34 3.05
Differential ratios [22] 8.57 9.00 7.01 14.31 3.13
Our method (500 iterations) 7.81 8.57 6.90 13.90 2.97

approach, no matter the noise level or the number of images (which were preprocessed via
low-rank factorization [28] in these two experiments).

By making the input images Lambertian via low-rank preprocessing [28], we can make
a reasonable comparison for the whole test dataset. Table 1 shows that our postprocessing
method can still improve the accuracy. The 3D-reconstruction results obtained with the full
pipeline are shown in Figure 4. In comparison with Figure 2, artefacts due to specularities are
clearly reduced.

5 Conclusions

We have shown the benefits of high performing numerical methods in the context of photo-
metric stereo. Let us emphasise that only by such novel numerical methods complex models
as arising in PS can be handled with success. Our results show that a significant quality gain
can be achieved in this way. A more detailed view on the computational results reveals that
remaining inaccuracies seem to be mostly due to shadows and highlights, edges and depth
discontinuities. Thus, an interesting perspective of our work would be to use more robust
estimators, which would ensure both robustness to outliers [9] and edges preservation [4].
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Figure 4: 3D-reconstruction results using the full pipeline, consisting of a preprocessing [28],
followed by classic PS [27], and finally the proposed method.
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