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Abstract

We propose an RGB-D visual odometry method that both minimizes the photometric
error and aligns the edges between frames. The combination of the direct photomet-
ric information and the edge features leads to higher tracking accuracy and allows the
approach to deal with challenging texture-less scenes. In contrast to traditional line fea-
ture based methods, we use all edges rather than only line segments, avoiding aperture
problem and the uncertainty of endpoints. Instead of explicitly matching edge features,
we design a dense representation of edges to align them, bridging the direct methods
and the feature-based methods in tracking. Image alignment and feature matching are
performed in a general framework, where not only pixels but also salient visual land-
marks are aligned. Evaluations on real-world benchmark datasets show that our method
achieves competitive results in indoor scenes, especially in texture-less scenes where it
outperforms the state-of-the-art algorithms.

1 Introduction

Visual odometry (VO)[17] focuses on estimating the camera motion from a sequence of im-
ages. VO more concerns the trajectory of a camera rather than a global map. Therefore, VO
is considered as a subproblem of visual simultaneous localization and mapping (vSLAM).
According to the type of inputs, VO can be mainly divided into monocular [4], stereo [9],
and RGB-D [17] three types. VO is widely used in robotics and augmented reality (AR) [11].
Inevitably, there are texture-less scenes that VO may encounter [19]. These scenes illustrated
in Fig. 4 are challenging, where many prevalent VO methods do not work. Taking an office
as an example. Small robots (i.e. sweeping robots) lower than desks may be confused with
the white wall and the floor without texture information; an AR helmet may lose track on the
white ceiling. In view of this, it is crucial to strengthen the robustness of VO in texture-less
scenes.

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 35.1-35.11

DOI: https://dx.doi.org/10.5244/C.30.35

https://dx.doi.org/10.5244/C.30.35


2 WANG ET AL.: EDGE ENHANCED DIRECT VISUAL ODOMETRY

In this paper, we present an RGB-D VO approach where camera motion is estimated
using the RGB images of two frames and the depth image of the first frame. Depth images
captured by RGB-D camera only provide reliable pixel-wise depth measurements. Thus,
tracking is indeed still monocular and is easy to expand to monocular version. Edges are
natural and robust features prominent in most man-made environments, especially texture-
less scenes. To overcome the difficulties in texture-less scenes we propose a semi-dense
visual odometry method that not only utilizes pixel-wise information but includes entire
edge features with a novel representation. The key contributions include:

• A robust registration method utilizing global edge features on an image instead of line
segments, which no longer suffers from the aperture problem and the uncertainty of
line segment endpoints.

• A dense representation for edge features which compresses the feature matching step
and reprojected error minimizing step into one single stage, where optimization on
image alignment and feature registration can be performed altogether.

• A general framework bridging the feature-based methods and the direct methods,
which not only uses entire pixel information but also distinguishes valuable landmarks
via aligning edges.

2 Related Work
A typical point feature based tracking approach first extracts designed features; then it re-
stores geometric transformation between images with valid matches of these feature points
[3][11][14]. These methods only use the information in a small region around the specif-
ic key points which rely heavily on texture, producing unsatisfying results on texture-less
scenes. To deal with such a disadvantage, direct methods [15][5] minimize an energy func-
tion over all pixels on images and involve relatively more information. In practice, however,
direct photometric information is less discriminative than visual features.

Besides point features, edge features are natural and informative which have been re-
ceiving great attention[16][12]. It is acknowledged that edge features are more robust to
light variance, motion blur and occlusion than point features. Specifically, edges are more
prominent than any other information in texture-less scenes. Previous researches mainly use
line segments rather than comprehensively utilizing edges for the difficulties with describing
and matching edges. Camillo et al. [2] extract line segments and minimize the distances
between line segments represented by their endpoints. Hirose et al. [8] design a Line-based
Eight-directional Histogram Feature (LEHF) for a line segment, making the edge feature
descriptor more informative. Line segments only partially use the edge information and are
prone to mistakes such as the aperture problem, which are caused by the homogeneity of
lines and the uncertainty of the endpoints. Tarrio and Pedre [20] use all edges but search the
correspondences in the normal directions, which is complicated.

There are researches focusing on fusing these methods and compensating for each other.
Lu and Song [13] fuse point and line features in RGB-D VO to deal with lighting variations
and uneven feature distributions. Forster et al. [7] design a semi-direct method that optimize
the photometric error of small patches around FAST corners.

Texture-less scenes are challenging for visual tracking. Kerl et al. [10] minimize both
photometric error and geometric error on RGB-D datasets. This method, however, is highly
dependent on the reliable depth data thus is hard to expand to a monocular version. Ta et
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Figure 1: Overview of our approach

al. [19] propose a wall-floor intersection feature to deal with man-made texture-less indoor
environments. This feature is mainly designed for the scenes that satisfy the Manhattan
assumption such as a corridor, and is not tested on common desk-scale scenes referring to
their paper.

3 Edge Enhanced Direct Visual Odometry

3.1 System Overview

As illustrated in Fig. 1, to estimate the trajectory of the camera from an RGB-D sequence
incrementally, every new frame (current frame Fc) is aligned to a reference frame Fr , which
is a carefully selected keyframe defined in Section 3.4.5. First, the visual edges are extracted
in Fc (edges in Fr have been extracted beforehand). Then, error caused by camera pose at
Fc is estimated: non-edge points in Fr are reprojected to Fc, followed by the computation
of photometric error defined in Section 3.4.1; meanwhile, edge points in Fr are reprojected
to a distance field (Section 3.3) derived from edges in Fc. Finally, motion is recovered in
an optimization schema: the edge distance error (Section 3.4.2) is minimized along with the
photometric error. To deal with the fast accumulation of drifting error, a key frame strategy
is used.

3.2 Geometric Notations

RGB-D visual odometry is aimed to estimate the camera trajectory from an RGB-D stream.
A typical RGB-D camera such as Microsoft Kinect generates a pair of RGB image It and
depth image Dt at the timestamp t. The RGB image and the depth image are registered and
are correspondent at pixel level. For an RGB image pixel p = (px, py)

T , It(p) denotes the
intensity and Dt(p) the depth at p.
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For a 3D point, X = (x,y,z)T denotes its position. The intrinsic parameters of a camera
used in our model consist of the focal length fx, fy and the camera center cx, cy. We project
3D points from the camera coordinate system to the image plane by

p = π(X) = (
x fx

z
+ cx,

y fy

z
+ cy)

T , (1)

where π(X) is the projection function. As for its inverse, we use π−1(p,d) to represent the
transformation from a pixel coordinate p and its correspondent depth d to a 3D point

X = π−1(p,d) = (
px− cx

fx
d,

py− cy

fy
d,d)T . (2)

The camera motion is a rigid transformation represented in Lie group:

T =

(
R t
0 1

)
∈ SE(3), R ∈ SO(3), t ∈ R3, (3)

where R is the rotation matrix and t is the translation vector. Specifically, we use Twc to
denote the transformation from the world coordinate system to the camera coordinate system:

Xc = TwcXw, (4)

where Xc and Xw denote the coordinate of a 3D point in the camera and the world coordinate
system.

T is an over-parameterized representation. We use a six dimensional vector ξ ∈ se(3) as a
compact representation, which is correspondent to T ∈ SE(3). Exponential map T = exp(ξ )
in Lie algebra does the conversion.

Given a transformation Ti j = exp(ξi j) from the frame i to j, a pixel p of frame i with the
depth Di(p) can be reprojected to the pixel p̃ of frame j by the warp function

p̃ = ω(p,d,ξi j) = π(Ti jπ−1(p,Di(p))). (5)

3.3 Edge Distance Transform
We apply the Canny edge detector[1] on each RGB image to extract edges. An example
result is showed in Fig. 2. Edges in an image is marked in a set E = {pi | l(pi) = 1}, where
a mask function l(p) denotes whether a pixel is an edge point

l(p) =

{
1, p is an edge point
0, otherwise.

(6)

On the assumption that a correct motion between the reference frame Fr and the current
frame Fc is recovered, the reprojected edges from Fr to Fc coincide with the edges observed
in Fc. To find the correct motion between Fr and Fc, the edges should be aligned. As edge
features are sparse and hard to describe (in the aspect of well-defined descriptors), we give
edges a dense representation using the distance transform algorithm in order to align edges
between frames.
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(a) Image (b) Edge (c) Distance transform

Figure 2: (a) is a frame image. (b) is the result of Canny edge detection from (a), where the
edges are labeled by white pixels. (c) is a distance transform image derived from edges in
(b), where the intensities reflect the distance field: whiter regions are further to edges.

Distance transform is a representation of an image, usually appears in the form of dis-
tance field. We define a distance field ∆(p) holding the minimal distance to the nearest edge
point for every pixel:

∆(pi) = min
q∈E

d(pi,q), (7)

where E is the set of edge points mentioned above. Fig. 2 illustrates a distance transform
image. The intensity reflects the value of distance field: whiter regions are further to edges.
Distance transform is a well researched problem. Many linear complexity algorithms such
as [6] have been proposed. Depending on the extracted edges in Fc, we can compute ∆(p)
very fast.

3.4 Image Alignment
3.4.1 Photometric Error

Based on Dr(p) of Fr and the relative transformation ξrc from Fr to Fc using the warp
function ω in Equation (5), the pixels in Fr are reprojected to Fc, as illustrated in Fig. 3.
The photometric error for pixel pi is defined as

r2
p(pi,ξrc) = (Ir(pi)−Ic(ω(pi,di,ξrc)))

2, (8)

where Ir(pi) is the intensity of pi in Fr, and Ic(ω(pi,di,ξrc)) in Fc after warping. These
two values are expected to be consistent when the pose estimation ξrc is accurate.

In practice, smooth regions of an image are less useful for image alignment. Instead of
all pixels, we use pixels whose intensity gradients are above a threshold, forming a subset
Ωr of the pixels in Fr. The photometric error between Fr and Fc is then defined as

Ep(ξrc) = ∑
pi∈Ωr

r2
p(pi,ξrc) = ∑

pi∈Ωr

(I(pi)−I(ω(pi,di,ξrc)))
2. (9)

3.4.2 Edge Distance Error

Similarly, we reproject edge points from Fr to Fc with the warp function ω . We use Er
and Ec to distinguish edge points in Fr and Fc. Assuming a stable performance of Canny
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Model

Reference Frame Current Frame
Error Function Minimization

ξrc

Figure 3: Computation of the error function. The pixels with depth estimation on the refer-
ence frame are reprojected to the current frame. The optimal ξrc is estimated by minimizing
the error function.

detector on consecutive frames, Er and Ec converge given a reasonable relative pose estima-
tion. We compute the distance between Er and Ec by summing up the values of ∆c(pi) after
reprojecting every pi ∈ Er onto ∆c

Ee(ξrc) = ∑
pi∈Er

r2
e(pi,ξrc) = ∑

pi∈Er

∆c(ω(pi,di,ξrc))
2, (10)

where ∆c denotes the distance field computed with the edges in Fc.

3.4.3 Error Function and Optimization

We organize our algorithm in an optimization fashion. Starting from the existing reference
frame Fr, we minimize the photometric error r2

p and the edge distance error r2
e altogether to

get an optimal relative pose ξrc. By multiplying a weight α , we combine these two types of
error and formulate an energy function

E(ξrc) = ∑
pi∈Ωr

r2
p(pi,ξrc)

σ2
p(pi,ξrc)

+α ∑
pi∈Er

r2
e(pi,ξrc)

σ2
e (pi,ξrc)

, (11)

where σk(pi,ξrc), k ∈ {p,e} are normalizing terms referring to [5] involving the gradient of
residual on the inverse depth map:

σ2
k (pi,ξrc) = (

∂ rk(pi,ξrc)

∂D−1
r (pi)

)2V, (12)

where D−1(p) denotes the inverse depth at p, and V denotes an constant inverse depth vari-
ance. These weight terms are inspired by [5] where more details are discussed.

We apply Levenberg-Marquardt algorithm to minimize the proposed non-convex objec-
tive function with the initial value set to the relative pose between the last frame and Fr. A
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(a) fr3-str-ntex-far (b) fr3-cab (c) fr1-rpy

(d) fr3-str-ntex-far (e) fr1-desk2

Figure 4: Example scenes in the benchmark dataset. (a) and (b) are texture-less scenes. (c) is
a desk scene with rich texture and heavy motion blur. (d) and (e) are the sample trajectories
of the camera.

coarse-to-fine pyramid approach starts from low resolution is adopted to increase the con-
vergence radius.

3.4.4 Edge Point Selection

Inconsistent edge points are eliminated from the edge point set Er concerning the robust-
ness of the algorithm. The inconsistency comes from two major reasons: on the one hand,
consecutive frames do not always hold the same edges due to fast motion or image blur; on
the other hand, it might occur that some reprojected edges from the reference frame are in
reality occluded in the current frame. We maintain a mean edge distance error r̄e for each
frame. For the current frame, edge points whose edge distances are β times large than r̄e
of the previous frame will be eliminated from Er. This process is performed on the image
pyramid in order.

3.4.5 Keyframe Selection

We use a frame-to-keyframe method to avoid the fast accumulation of drift error. Current
frame is tracked on the latest keyframe acting as the reference frame. A new keyframe
is created and replaces the reference frame under several conditions: the distance between
camera principles, or the angle between optical axises, or the edge distance error between
two frames is larger than thresholds, which lead to small overlap between two frames; a large
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sequence EE-VO LSD(VO) ORB(VO)
fr3-str-ntex-far 0.019 0.067 0.110
fr3-str-ntex-far(v) 0.018 0.148 0.060
fr3-cab 0.268 0.322 0.384
fr1-desk 0.051 0.044 0.070
fr1-desk2 0.067 0.095 0.099
fr1-xyz 0.049 0.041 0.008
fr1-rpy 0.065 0.064 0.080

Table 1: RMSE of absolute trajectory error (ATE) in meters on TUM-RGBD dataset. The
sequences with f r3 prefix capture texture-less scenes. f r1-desk2 and f r2-rpy suffer from
heavy motion blur. LSD and ORB are all running in pure localization mode where global
optimization is disabled.
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Figure 5: Qualitative comparison of trajectories.

difference of edge point number between two frames due to fast motions or occlusions.

4 Experiments
Our system, named Edge Enhanced Direct Visual Odometry (EEVO), is implemented based
on the open source software of [5]. The pyramid approach used in our system starts from
the resolution of 80×60 and ended with 320×240 with step 2. Empirically, the weight α
used to combine the photometric error and the edge distance error in Equation (11) is set in
the range of 52 ∼ 102, and the threshold β discussed in 3.4.4 is set in the range of 2 ∼ 6.
Generally, texture-rich scenes prefer lager α and β while texture-less scenes the opposite.
To ensure the best performance, we manually adjust the parameters on some sequences.

We test our approach on the TUM RGB-D benchmark[18] on a PC with Intel Core i5-
4590 CPU and 8GB memory, running at the speed of 27 ∼ 39 fps according to the content
of the images. This benchmark contains multiple real world RGB-D sequences and provides
accurate ground-truth trajectories. It has been widely used for evaluation for RGB-D visual
odometry or RGB-D SLAM.

The sequences in Table 1 with f r3 prefix capture texture-less scenes illustrated in Fig. 4.
f r3-str-ntex- f ar and f r3-str-ntex- f ar(v) capture the same scene that only contains a white
wall, as shown in Fig. 4 (a) and (d). Red dots in Fig. 4 (d) plot the trajectory recovered by our
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method, while blue dots demonstrate the ground truth trajectory. f r3-cab captures a smooth
black cabinet, as shown in Fig. 4 (b). Sequences with f r1 prefix capture a desk-scale scene
in an office with rich texture. The camera sweeps over four desks, as shown in Fig. 4 (e).
The fast motion of camera generates heavy motion blur causing great difficulties in tracking,
which is shown in Fig. 4 (c).

We evaluate our method both on texture-less scenes and common indoor scenes, and
compare the result to the state-of-the-art methods for both the point feature based method
ORB-SLAM and the direct method LSD-SLAM. It is worth it to mention that these two
methods run in pure localization mode using RGB-D images without global optimization,
since we define the problem in the aspect of visual odometry. The original implementation
of ORB-SLAM refuses to track the sequences on texture-less scenes where feature points
are insufficient. We modify ORB-SLAM and adjust some thresholds in ORB-SLAM and
LSD-SLAM to enable tracking in some extreme conditions.

In our evaluations, a recovered trajectory is denoted with ξ1, · · · ,ξn ∈ se(3). Relatively,
the ground truth trajectory is denoted with η1, . . . ,ηn ∈ se(3). The absolute trajectory error
(ATE) referring to [18] is utilized to show the global consistency of the estimated trajectory.
This error is computed after aligning the estimated trajectory to the ground truth with a rigid
transformation S

Ei = Q−1
i SPi. (13)

Table 1 lists the results of RMSE of ATE. Fig. 5 shows the trajectories on these datasets.
The first three sequences in the table are captured in texture-less scenes. The results show
that our method outperforms others on these three texture-less sequences. It is reasonable
since edge features are prominent in texture-less scenes: the alignment of edges does im-
prove the robustness. Our method also achieves challenging results on sequences with heavy
motion blur, indicating its robustness to fast motion. As far as we concern, the heavy mo-
tion blur not only increases the difficulties of extracting point features, but also reduces the
discrimination of intensities used in direct methods; edge features are more robust with our
dense representation.

5 Conclusions and Future Work

In this paper, we present a real-time RGB-D visual odometry approach that fuses both the
photometric information and the edge features, bridging the prevalent direct and feature-
based methods. This combination is realized in a nature way by designing an elegant dense
representation for sparse edge features. Through our experiments, we demonstrate that our
method produces challenging results on common indoor scenes. Moreover, the fusion of two
kinds of information significantly improve the robustness of tracking in texture-less scenes,
comparing to the methods using either of them. In the future, we plan to expand our method
to a monocular SLAM framework that fully use RGB images. Under the epipolar constraint,
the edges in our framework provide spacial prior knowledge for stereo matching, which is
able to reconstruct a more reliable semi-dense map.
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