
TUNG, LITTLE: FACTORIZED BINARY CODES 1

Factorized Binary Codes for Large-Scale
Nearest Neighbor Search

Frederick Tung
ftung@cs.ubc.ca

James J. Little
little@cs.ubc.ca

Department of Computer Science
University of British Columbia
Vancouver, Canada

Abstract

Hashing algorithms for fast large-scale nearest neighbor search transform data points
into compact binary codes by applying a set of learned or randomly generated hash func-
tions. Retrieval accuracy generally increases with the number of hash functions, but
increasing the number of hash functions also increases the storage requirements of the
resulting binary codes. We present a novel factorized binary codes approach that uses
an approximate matrix factorization of the binary codes to increase the number of hash
functions while maintaining the original storage requirements. The proposed approach
does not assume a particular algorithm for generating the hash functions, and requires
only that we can discover and take advantage of correlations among the hash functions.
Experiments on publicly available datasets suggest that factorized binary codes work
particularly well for locality-sensitive hashing algorithms.

1 Introduction

Nearest neighbor search is a ubiquitous problem in computer vision, and forms an essential
building block in algorithms ranging from semantic segmentation [15, 26, 29, 32], to 3D re-
construction [16, 25], to object recognition [27, 28], image inpainting [8], image captioning
[21], and others. Given a previously unseen query point q ∈ Rd , we seek its closest matches
in a database X∈Rn×d , where the number of database points n may be large. While the prob-
lem formulation is simple, a wide variety of techniques have been developed to efficiently
find nearest neighbors, with different tradeoffs in speed, memory consumption, accuracy,
and training requirements.

One class of techniques for nearest neighbor search is hashing algorithms for construct-
ing compact binary codes. Hashing algorithms transform the original data points into com-
pact bit string signatures that require significantly less storage space and can be compared
quickly using bit operations. In particular, the Hamming distance between two bit strings
can be computed quickly by taking an XOR and counting the ones. This operation is sup-
ported directly in modern hardware, and can be accelerated even further using algorithms for
efficient Hamming distance computation [20].

We can think of the bits in a binary code as the decisions of a set of hash functions or
hyperplanes, possibly in some kernelized space. These hyperplanes are learned or generated

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 34.1-34.12

DOI: https://dx.doi.org/10.5244/C.30.34

https://dx.doi.org/10.5244/C.30.34

2 TUNG, LITTLE: FACTORIZED BINARY CODES

X
W

n

d

d

c

Y
{0,1}

c

sgn
n

Xn

d

W
l

cl

d Y
l

{0,1}

cl

sgn
n ≈ S

{0,1}

B {0,1}

n

clk

k

X
W

n

d

d

c

Y
{0,1}

c

sgn
n

Xn

d

W
l

cl

d Y
l

{0,1}

cl

sgn
n ≈ S

{0,1}

B {0,1}

n

clk

k

Figure 1: An overview of the factorized binary codes approach. Top: Hashing algorithms
for learning compact binary codes transform the original data points X ∈ Rn×d into binary
codes Y ∈ {0,1}n×c by sign-thresholding XW, where W ∈ Rd×c is a set of hash functions
or hyperplanes. In general, performance improves with the number of hash functions c.
However, increasing c also increases the length of the binary codes, leading to higher storage
requirements. Bottom: The proposed approach increases the number of hash functions to cl

without increasing storage requirements by approximating the resulting long binary codes
Yl as the Boolean product of two binary matrices S and B. The total number of bits in S and
B is restricted to the bit budget of the original Y (i.e. the areas highlighted in orange are the
same).

by the hashing algorithm. When computing the binary code y for a data point x ∈Rd , the ith
bit of y is determined by the side of the ith hyperplane wi on which x lies:

yi = sgn(wi ·x) = sgn(wT
i x) (1)

where sgn(·) returns 0 if its argument is negative and 1 otherwise, and wi ∈Rd . Stacking the
hash functions and data points in matrix form, we have

Y = sgn(XW) (2)

where X ∈ Rn×d , W ∈ Rd×c, Y ∈ {0,1}n×c, and c is the number of hash functions, or the
number of bits in the generated binary code.

Typically, nearest neighbor search performance improves as the number of hash functions
increases, i.e. as c increases. However, as the number of hash functions increases, the matrix
Y of binary codes also increases in size, leading to higher storage requirements. If we wish
to improve retrieval performance by doubling the number of hash functions, we have to store
binary codes that are twice the length.

What if we could double (or triple, quadruple, etc.) the number of hash functions without
increasing the storage requirements of the binary codes? Then we would obtain improved re-
trieval performance without incurring additional storage costs. Of course, we cannot expect
to increase the number of hash functions for free. Some form of approximation is required.

Figure 1 illustrates the factorized binary codes approach. Given X, W, and Y as defined
in Eq. (2), define a ‘long’ code length cl > c, and form the matrix Wl ∈Rd×cl

, which appends
(cl − c) new hash functions to the c existing hash functions in W. The new hash functions

TUNG, LITTLE: FACTORIZED BINARY CODES 3

are generated using the same procedure as the existing hash functions, according to the
underlying hashing algorithm. The resulting binary code matrix Yl is n× cl in size. We
approximate Yl using the Boolean product of two binary matrices S and B, such that S and
B together contain the same number of bits as the original Y.

The proposed approach is general and does not assume a particular hashing algorithm for
generating the hash functions. Factorization assumes we can discover and take advantage of
correlations among the generated hash functions. Consequently, our method cannot be ap-
plied on top of orthogonal hashing algorithms such as PCA hashing and iterative quantization
[7], since these generate uncorrelated hash functions. On the other hand, we observe a signif-
icant boost in retrieval performance for several locality-sensitive hashing algorithms, which
generate random hash functions. Locality-sensitive hashing algorithms require no training,
can be kernelized, and have been successfully applied in many large-scale computer vision
problems, including image retrieval, feature matching, and object classification [4, 11, 14].

After describing related work in nearest neighbor search (Section 2), we will explain
the factorized binary codes approach in detail (Section 3), and present experiments on two
publicly available datasets (Section 4).

2 Related work
Hashing algorithms for nearest neighbor search represent different ways to generate the hash
functions or hyperplanes W in Eq. (2). These algorithms differ in their training requirements,
speed, and retrieval accuracy.

Locality-sensitive hashing (LSH) [3, 6] is a general technique for fast nearest neighbor
search that is data independent. In LSH, the probability of two data points being hashed
to the same value is proportional to some measure of similarity between the data points.
For example, suppose the hash functions (hyperplanes) in W are randomly drawn from a
d-dimensional, zero-mean Gaussian distribution [3]. Then for any such hyperplane w,

Pr[sgn(wT xi) = sgn(wT x j)] = 1− θ(xi,x j)

π
(3)

where θ(xi,x j) is the angle between xi and x j.
Raginsky and Lazebnik [22] proposed a locality-sensitive hashing method that preserves

the similarity induced by a shift-invariant kernel (SKLSH). SKLSH does not make any as-
sumptions about the distribution of the data points and has theoretical convergence guar-
antees as the number of hash functions increases. In particular, the normalized Hamming
distance between two binary codes converges to a monotonic function of the kernel value.
SKLSH is realized by mapping data points through random Fourier features (RFF) [23] fol-
lowed by random threshold quantization.

Kulis and Grauman [14] formulated a locality-sensitive hashing method that operates on
arbitrary kernels (KLSH). Each hash function is a random hyperplane in the implicit high-
dimensional kernel space that can be computed by a weighted sum of kernel evaluations
over a sampled subset of database points. The underlying feature space does not need to be
known.

Recently, Jiang et al. [11] presented a theoretical analysis of KLSH, re-interpreting the
algorithm as LSH after PCA projection in a high-dimensional (possibly infinite-dimensional)
kernel space, and giving the first retrieval performance bounds for KLSH. Interestingly, the
performance bounds are shown to be determined by the dimensionality of the kernel PCA

4 TUNG, LITTLE: FACTORIZED BINARY CODES

subspace and the number of sampled database points, and not the number of hash functions.
In standard KLSH, the dimensionality of the kernel PCA subspace equals the number of sam-
pled database points minus one. Jiang et al.’s analysis leads naturally to a low-rank extension
of KLSH: improved results may be attainable by projecting into a smaller-dimensional sub-
space than the number of sampled database points minus one.

Though locality-sensitive hashing algorithms have asymptotic convergence properties, a
large number of hash functions is typically required to obtain good performance in practice,
leading to high storage costs. As a result, many data-driven hashing methods have been
developed, which rely on training or optimization to find a small set of hyperplanes that ob-
tains good performance with more compact binary codes [7, 13, 18, 30]. Besides hashing,
another important class of techniques for nearest neighbor search is vector quantization algo-
rithms, which encode data points using learned codebooks that can be combined in product
[5, 9, 10, 19] or additive [1, 2] forms. Vector quantization algorithms tend to achieve high
retrieval accuracy but are slower than hashing algorithms.

3 Factorized binary codes
Hashing algorithms compute compact binary codes Y ∈ {0,1}n×c by transforming database
points X ∈Rn×d using a learned or generated set of hash functions (hyperplanes) W ∈Rd×c

via Eq. (2), possibly in a kernelized space. In general, increasing the number of hash func-
tions c improves the retrieval accuracy. However, increasing c also increases the length of
the binary codes, leading to higher storage requirements. For example, doubling the number
of hash functions doubles the size of the binary code matrix Y. We would like to use more
hash functions to improve retrieval accuracy but must balance this with the increased storage
requirements of Y.

The factorized binary codes approach increases the number of hash functions while main-
taining the storage requirements of the original binary codes Y. An overview is shown in
Fig. 1. Define cl > c and augment the set of hash functions W with additional hash functions
to obtain Wl ∈ Rd×cl

. The additional hash functions are generated using the same hashing
algorithm as the original hash functions. We do not assume a particular algorithm for gen-
erating hash functions, and will demonstrate several possible algorithms in the experiments.
The augmented matrix Wl produces ‘long’ binary codes Yl ∈ {0,1}n×cl

:

Yl = sgn(XWl) (4)

Next, we approximate Yl as the Boolean product of two factor matrices S and B, both of
which are also binary:

Yl ≈ S◦B (5)

where S ∈ {0,1}n×k, B ∈ {0,1}k×cl
, and ◦ denotes the Boolean product. The Boolean

product of two binary matrices is the same as their regular matrix multiplication but with
1+1 = 1. The storage requirement of the original binary codes Y is nc bits. We restrict the
total number of bits in S and B to also be nc bits. This is achieved by setting k = b nc

n+cl c, as

nk+ kcl ≤ nc ⇒ k ≤ nc
n+ cl , (6)

TUNG, LITTLE: FACTORIZED BINARY CODES 5

provided cl is not so extremely large as to make k = 0. Hence, S and B require the same
number of bits as the original Y and there is no additional storage overhead. To achieve the
factorization in Eq. (5), we seek the factors S and B that minimize the reconstruction error

|Yl−S◦B|=
n

∑
i=1

cl

∑
j=1
|Yl

i j− (S◦B)i j| (7)

This problem is NP-hard and cannot be approximated within any factor in polynomial time
unless P=NP [17]. However, we can obtain an approximate solution using a greedy asso-
ciation technique [17] from the data mining community (other binary matrix factorization
techniques are also possible, e.g. [33]). Intuitively, we can think of the matrix B ∈ {0,1}k×cl

as a basis vector matrix encoding a set of k binary basis vectors, each of dimensionality cl .
A basis vector in B represents a set of correlated attributes, or hash functions in our case.
For example, in document retrieval, a basis vector may encode a set of words that define
a topic. Finding the basis vector matrix B ∈ {0,1}k×cl

and usage matrix S ∈ {0,1}n×k to
minimize Eq. 7 then becomes a problem of discovering or mining the correlations present
in the ‘long’ codes Yl . The association technique in [17] forms an association matrix using
standard data mining and then draws basis vectors from the association matrix in a greedy
manner to optimize a cover measure. The overall time complexity of the association tech-
nique is O(kn(cl)2). The technique requires a single parameter τ , which we set by validation
on a held-out set.

Processing novel queries. Now we have binary factor matrices S and B, with which
we can approximately reconstruct the ‘long’ binary codes Yl computed using the augmented
set of hash functions. Given a previously unseen query q ∈ Rd , the ‘long’ binary code
yq ∈ {0,1}cl

is computed using the augmented set of hash functions

yq = sgn(WlT q) (8)

and matched with the approximate binary codes Ỹl as reconstructed using the factors S and
B:

Ỹl = S◦B≈ Yl (9)

In summary, the factorized binary codes approach increases the number of hash func-
tions from c to cl and approximates the resulting ‘long’ binary codes Yl ∈ {0,1}n×cl

as the
Boolean product of two binary factor matrices S ∈ {0,1}n×k and B ∈ {0,1}k×cl

, such that
the factor matrices require no more storage than the original binary codes Y ∈ {0,1}n×c.
The factor matrices that approximately minimize Eq. 7 are obtained by discovering corre-
lations among the hash functions using a greedy association technique [17]. We observe
the proposed approach to work particularly well with locality-sensitive hashing algorithms
[3, 11, 14, 22], which generate random hash functions.

4 Experimental results
We performed experiments on two publicly available datasets: CIFAR-10 [12] and LM+SUN
[26]. The CIFAR-10 dataset [12] is a 60,000-image, 10-class subset of the Tiny Images
dataset [28] of 32×32 resolution images. The LM+SUN dataset [26] is a standard semantic
segmentation dataset consisting of 45,676 images from the LabelMe [24] and SUN [31]

6 TUNG, LITTLE: FACTORIZED BINARY CODES

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

CIFAR−10, 16 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

CIFAR−10, 32 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

CIFAR−10, 48 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

CIFAR−10, 32 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

Figure 2: Experimental results on the CIFAR-10 [12] dataset. Dashed curves show the re-
trieval accuracy of conventional binary codes generated using LSH [3], SKLSH [22], KLSH
[14], and LR-KLSH [11]. Solid curves show the retrieval accuracy of the corresponding
factorized binary codes.

datasets. We computed 384-dimensional Gist descriptors for all images. For CIFAR-10, we
randomly generated five training-testing splits, each containing 1,000 test queries. Results
are averaged over the five splits. For LM+SUN, we used the standard training-testing split.
Results are averaged over five trials.

Retrieval performance is measured using recall@N curves [5, 10, 19], which plot the
proportion of true neighbors retrieved in the first N Hamming neighbors. The ground truth
is considered to be the query’s 10 nearest Euclidean neighbors.

The proposed approach does not assume any particular algorithm for generating hash
functions, only that we can discover and take advantage of correlations among the generated
hash functions. We applied factorized binary codes to several locality-sensitive hashing algo-
rithms, including traditional LSH [3], shift-invariant kernel preserving LSH (SKLSH) [22],
kernelized LSH (KLSH) [14], and the recently presented low-rank extension of kernelized
LSH (LR-KLSH) [11]. In the following we will denote the factorized versions by Factorized
LSH, Factorized SKLSH, Factorized KLSH, and Factorized LR-KLSH. We set cl = 1024
in all experiments, and varied the storage budget c from 16 bits, to 32 bits, to 48 bits per
database point.

TUNG, LITTLE: FACTORIZED BINARY CODES 7

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 16 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 32 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 48 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 32 bits per data point

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

Figure 3: Experimental results on the LM+SUN [26] dataset. Dashed curves show the re-
trieval accuracy of conventional binary codes generated using LSH [3], SKLSH [22], KLSH
[14], and LR-KLSH [11]. Solid curves show the retrieval accuracy of the corresponding
factorized binary codes.

Fig. 2 shows the retrieval results on the CIFAR-10 dataset. The dashed curves show the
recall performance of the conventional c-bit binary codes generated by LSH, SKLSH, KLSH,
and LR-KLSH. The solid curves of the corresponding colors show the recall performance
using factorized binary codes. We observed a consistent improvement in retrieval accuracy
across the four hashing algorithms. For example, at 32 bits per database point, factorized
binary codes lift the recall@1000 of LSH by 13% (or 39% relative), SKLSH by 9.2% (47%
relative), KLSH by 5.4% (14% relative), and LR-KLSH by 7.7% (17% relative).

Fig. 3 shows similar retrieval results on the LM+SUN dataset. Factorized binary codes
lift the recall across all four hashing algorithms. For example, at 32 bits per database point, an
improvement of 16% (29% relative), 27% (94% relative), 23% (54% relative), and 13% (21%
relative) in recall@1000 is obtained for LSH, SKLSH, KLSH, and LR-KLSH, respectively.

Fig. 4 shows typical qualitative results on LM+SUN at 32 bits per database point. Re-
trieval is performed using Factorized LSH. We observe that semantic neighbors are generally
well preserved despite the high compression level. Replacing the 384-dimensional Gist de-
scriptor with a 32-bit binary code reduces storage requirements by two orders of magnitude
(1,536 or 3,072 bytes to 4 bytes).

8 TUNG, LITTLE: FACTORIZED BINARY CODES

Figure 4: Qualitative results on the LM+SUN [26] dataset (collected from LabelMe [24]
and SUN [31]). From left to right: query image, ground truth (Gist) neighbors, retrieved
neighbors using Factorized LSH at a storage budget of 32 bits per database point. Neighbors
are ordered from left to right, then top to bottom within each block.

TUNG, LITTLE: FACTORIZED BINARY CODES 9

Table 1: Search times on LM+SUN (all 500 queries)
32 bits 48 bits

LSH 131 ± 19 ms 210 ± 4 ms
Factorized LSH 331 ± 26 ms 339 ± 28 ms
SKLSH 139 ± 21 ms 212 ± 5 ms
Factorized SKLSH 406 ± 43 ms 394 ± 70 ms
KLSH 137 ± 13 ms 240 ± 37 ms
Factorized KLSH 347 ± 31 ms 336 ± 23 ms
LR-KLSH 137 ± 16 ms 235 ± 19 ms
Factorized LR-KLSH 355 ± 20 ms 345 ± 19 ms

Table 2: Factorization learning times on LM+SUN
16 bits 32 bits 48 bits

Factorized LSH 12.4 ± 0.2 min 24.8 ± 0.2 min 37.3 ± 0.4 min
Factorized SKLSH 14.0 ± 0.2 min 27.9 ± 0.8 min 41.8 ± 0.9 min
Factorized KLSH 12.6 ± 0.4 min 25.3 ± 0.4 min 36.4 ± 1.2 min
Factorized LR-LSH 14.1 ± 0.6 min 28.5 ± 0.6 min 41.6 ± 0.9 min

Computation time. Table 1 shows search times on LM+SUN (over all 500 queries).
Time overhead is incurred from comparing the longer binary codes yq. Search times for
factorized codes do not vary significantly between 32 and 48 bits because cl = 1024 in all
experiments. In addition, there is a one-time cost to compute Ỹl using Eq. 9. Table 2 shows
factorization learning times on LM+SUN. All timings are obtained using a desktop with a
3.60GHz CPU, single threaded execution with hardware XOR acceleration (popcount).

Applicability and future work. Factorization assumes we can discover correlations
among the hash functions used to generate the ‘long’ binary codes Yl . Consequently, our
approach cannot be applied on top of orthogonal hashing algorithms such as PCA hashing
or iterative quantization [7], which generate uncorrelated hash functions by construction.

The performance of factorized binary codes depends on how accurately Yl can be ap-
proximated by S and B, and on how much improvement in retrieval is derived by increasing
the number of hash functions. We believe a promising direction for future work will be to
develop a more accurate method for finding S and B.

5 Conclusion

Hashing algorithms for large-scale nearest neighbor search typically improve as the number
of hash functions increases. This paper has presented factorized binary codes, which use
an approximate binary matrix factorization to increase the number of hash functions while
maintaining the original storage costs of the binary codes. The presented approach is general
and does not assume a particular hashing algorithm. We believe that factorized binary codes
will be a useful technique for boosting the performance of hashing algorithms that can derive
a large benefit from additional hash functions. We plan to improve the technique further by
pursuing more effective binary matrix factorization.

Acknowledgements. This work was funded in part by the Natural Sciences and Engi-
neering Research Council of Canada.

10 TUNG, LITTLE: FACTORIZED BINARY CODES

References
[1] A. Babenko and V. Lempitsky. Additive quantization for extreme vector compression.

In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014.

[2] A. Babenko and V. Lempitsky. Tree quantization for large-scale similarity search and
classification. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015.

[3] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proc.
ACM Symposium on Theory of Computing, 2002.

[4] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik. Fast,
accurate detection of 100,000 object classes on a single machine. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, 2013.

[5] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate near-
est neighbor search. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2013.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.
In Proc. International Conference on Very Large Data Bases, 1999.

[7] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: a Procrustean
approach to learning binary codes for large-scale image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(12):2916–2929, 2013.

[8] J. Hays and A. A. Efros. Scene completion using millions of photographs. In Proc.
ACM SIGGRAPH, 2007.

[9] J.-P. Heo, Z. Lin, and S.-E. Yoon. Distance encoded product quantization. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2014.

[10] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–
128, 2011.

[11] K. Jiang, Q. Que, and B. Kulis. Revisiting kernelized locality-sensitive hashing for
improved large-scale image retrieval. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

[12] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[13] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In
Advances in Neural Information Processing Systems, 2009.

[14] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(6):1092–1104, 2012.

[15] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, L. Lin, X. Cao, and S. Yan. Matching-
CNN meets KNN: quasi-parametric human parsing. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

TUNG, LITTLE: FACTORIZED BINARY CODES 11

[16] K. Matzen and N. Snavely. Scene chronology. In Proc. European Conference on
Computer Vision, 2014.

[17] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis
problem. IEEE Transactions on Knowledge and Data Engineering, 20(10):1348–1362,
2008.

[18] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. In Proc.
International Conference in Machine Learning, 2011.

[19] M. Norouzi and D. J. Fleet. Cartesian k-means. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2013.

[20] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in Hamming space with multi-
index hashing. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012.

[21] V. Ordonez, G. Kulkarni, and T. L. Berg. Im2Text: describing images using 1 million
captioned photographs. In Advances in Neural Information Processing Systems, 2011.

[22] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant
kernels. In Advances in Neural Information Processing Systems, 2009.

[23] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, 2007.

[24] B. C. Russell, A. Torralba, K. Murphy, and W. T. Freeman. LabelMe: a database and
web-based tool for image annotation. International Journal of Computer Vision, 77
(1-3):157–173, 2008.

[25] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in
3D. In Proc. ACM SIGGRAPH, 2006.

[26] J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric image parsing with
superpixels. International Journal of Computer Vision, 101(2):329–349, 2013.

[27] T. Tommasi and B. Caputo. Frustratingly easy NBNN domain adaptation. In Proc.
IEEE International Conference on Computer Vision, 2013.

[28] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11):1958–1970, 2008.

[29] F. Tung and J. J. Little. CollageParsing: Nonparametric scene parsing by adaptive
overlapping windows. In Proc. European Conference on Computer Vision, 2014.

[30] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in Neural Infor-
mation Processing Systems, 2008.

[31] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: large-scale
scene recognition from abbey to zoo. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, pages 3485–3492, 2010.

12 TUNG, LITTLE: FACTORIZED BINARY CODES

[32] J. Yang, B. Price, S. Cohen, and M. Yang. Context driven scene parsing with attention
to rare classes. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
2014.

[33] Z. Zhang, T. Li, C. Ding, and X. Zhang. Binary matrix factorization with applications.
In Proc. International Conference on Data Mining, 2007.

