
ZHANG, BHALERAO: SUPPLEMENTARY MATERIAL 1

Supplementary Material for:
Loglet SIFT for Part Description in
Deformable Part Models: Application to Face
Alignment
Qiang Zhang
q.zhang.13@warwick.ac.uk

Abhir Bhalerao
abhir.bhalerao@warwick.ac.uk

Department of Computer Science
University of Warwick
Coventry, UK

Appendix A: Scale Pooling in Spatial Domain and Filter
Accumulation in Fourier Domain
One of the key features of the SIFT is that it performs the pooling in a 2D neighbourhood
in the spatial domain. In a recent study [1] Dong proposed to extend the pooling to spatial-
scale space, by performing an additional pooling across adjacent scales in order to enhance
the invariance to minor scale changes. We prove that the filter accumulation in Fourier
domain is equivalent to scale pooling, under the approximation that gradients at adjacent
scales have similar orientations, which is reasonable when low orientation resolution such as
π/4 (8 orientation bins) are used.

An un-normalised gradient histogram of a SIFT cell in a region centred at point x can be
written compactly as [1],

h(θ |I) = ∑
x′

κε(θ −∠∇I(x′))κσ (x−x′)||∇I(x′)|| (1)

where θ is a variable corresponding to an orientation histogram bin. Discrete bins are com-
puted using a bilinear interpolation kernel κε with ε = 2π/n where n is the number of bins,
and linear spatial weighting kernel κσ with σ controls the size of a cell. Note that unlike
in [1] we use a discrete form in (1) as is the case in the practical implementation.

Now consider the filter accumulation in Fourier domain used in the first scale of our
L-SIFT descriptor. The gradient can be represented by ∇I = [Ix, Iy], with each direction
calculated with the first scale filter (a bundle of loglets),

Ix =F−1(F(I) ·W(1)
x )

=F−1
(
F(I) ·∑

s
Wx(u,s)

)
=∑

s
F−1 (F(I) ·Wx(u,s)) , s ∈ {0,−1, ...}

(2)

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Dong and Soatto} 2015

Citation
Citation
{Dong and Soatto} 2015

Citation
Citation
{Dong and Soatto} 2015



2 ZHANG, BHALERAO: SUPPLEMENTARY MATERIAL

The gradient can therefore be written as

∇I = [Ix, Iy] = ∑
s

∇
(s)I (3)

with ∇(s) represents a gradient computation with a single loglet filter at scale s. Substituting
(3) into (1) we obtain the SIFT with gradient computed by accumulated filters,

h(θ |I) = ∑
x′

κε(θ −∠∇I(x′))κσ (x−x′)||∑
s

∇
(s)I(x′)|| (4)

Considering that feature gradients at adjacent scales have similar orientations, and SIFT
uses discrete orientation bins with a low angular resolution, the following approximation can
be made,

h(θ |I)≈∑
s

∑
x′

κε(θ −∠∇sI(x′))κσ (x−x′)||∇sI(x′)||

=∑
s

hs(θ |I)
(5)

Where hs(θ |I) represents a standard SIFT with the gradient computed by a single loglet at
scale s. Therefore we proved that a SIFT computed on the gradient by accumulated filters
in Fourier domain is equivalent to accumulating a group of SIFTs cumputed on multi-scale
gradients in spatial domain.

The rationale behind the significant improvement by scale pooling is that it gives invari-
ance to minor scale changes as well as sample shifts of digital images. In our strategy, the
first invariance is achieved by expanding the bandwidth by filter accumulation, the second
invariance comes from the natural insensitivity of loglets function to sample shift [2].

Appendix B: Spectrum Cropping as Image Downsampling
A digital image is a discrete (i.e., band limited) sampling of the continuous (i.e., not band
limited) true signal. In Fourier domain, the spectrum of the image therefore covers only
the low frequency components of the true signal spectrum which spreads infinitely, and cuts
off at the Nyquist boundary, see Fig. 1. Images representing the same scene with lower
resolution is presented in Fourier domain as a spectrum covering a smaller range centred
at the zero frequency. As such, image downsampling can be done by cutting the spectrum
keeping only the lower frequency. In practice, due to the discrete form, both the image and
the spectrum are periodic signals. To avoid the aliasing caused by the periodic discontinuity,
a window function such as Gaussian is applied to attenuate the magnitude near Nyquist
frequency, which appears in spatial domain as a Gaussian smoothing. Below we describe the
process mathematically.

Denote I as the spectrum of a digital image I, the image can be recovered by inverse
Fourier transform,

I(x) =
∫∫

π

−π

I(u)e jx·udu (6)

where x = (x,y) and u = (u,v) are the index vectors in spatial and Fourier domain respec-
tively. Suppose we want to downsample the image at ratio β ∈ (0,1). We first apply a
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Figure 1: (a) A digital image is a discrete sampling and approximation of the true continuous
signal at certain resolution. (b) Spectrum of the true continuous signal is not band-limited
therefore spreads infinitely. (c) Spectrum of the digital image is band-limited therefore cov-
ers only a low frequency area and is truncated at certain range. (d) Image downsampling
can be performed directly by cropping the spectrum in Fourier domain. In theory the new
spectrum (d) should be a subregion of the true spectrum (b), which is however not available.
Therefore the cropping can be performed on the spectrum (c) instead. In practice cropping
the spectrum can not ensure the periodic contineous of the new spectrum therefore causes al-
ising effect. A standard way is to attenuate the spectrum to zero at the boundary by applying
a Gaussian window to it (e), which corresponds to a smoothing in the spatial domain.

window function to attenuate the components beyond the boundary ±βπ to zero. With the
windowing (6) equals to,

I(x) =
∫∫

βπ

−βπ

I(u)e jx·udu (7)

We define new variables u1 = u/β , x1 = βx, and a coordinate transform of the spectrum
I1(u1) = I(u). Substituting them in to (7) we have,

I(x) =
∫∫

βπ

−βπ

I1(u1)e jx1·u1d(βu1)

=β

∫∫
π

−π

I1(u1)e jx1·u1du1

=β I1(x1),

(8)

where I1 is the downsampled image, i.e.,

I1(x1) = I(x)/β , x1 = βx. (9)

In our case, with larger scale filtersW(s),s ∈ {2,3, ...}, the high frequency components
beyond the boundary ±π/2(s−1) are eliminated and a direct crop of the spectrum gives an
efficient downsampling at ratio 1/2(s−1) without aliasing.

Appendix C
Theorem: Derivative of an image I(x,y) results in an imaginary anti-symmetrical transform
of the spectrum F(I).
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Derivation: Taking the derivative with respect to x as an example. The Fourier transform of
I is,

F(I) =
∫∫ +∞

−∞

I e−2πi(ux+vy)dxdy, (10)

where (u,v) ∈ [−π,π] are the coordinates in the Fourier domain. The Fourier transform of
the derivative dI/dx is,

F( dI
dx

) =
∫∫ +∞

−∞

dI
dx

e−2πi(ux+vy)dxdy, (11)

Consider the following equation,

d(Ie−2πi(ux+vy))

dx
=

dI
dx

e−2πi(ux+vy)+
d(e−2πi(ux+vy))

dx
I

=
dI
dx

e−2πi(ux+vy)−2πiu e−2πi(ux+vy)I,
(12)

therefore,
dI
dx

e−2πi(ux+vy) =
d(Ie−2πi(ux+vy))

dx
+2πiu e−2πi(ux+vy)I, (13)

Substituting (13) into (11) we have,

F( dI
dx

) =
∫∫ +∞

−∞

d(Ie−2πi(ux+vy))

dx
dxdy+

∫∫ +∞

−∞

2πiu e−2πi(ux+vy)Idxdy

=2πiu
∫∫ +∞

−∞

I e−2πi(ux+vy)dxdy

=2πiu F(I),

(14)

which indicates that the derivative of image I results in the multiplication of the Fourier
spectrum by an imaginary anti-symmetrical term 2πiu.
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