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Abstract

In this work, we have proposed to invert the local binary patterns (LBP) descrip-
tor. The success of the inversion gives rise to two applications: face de-appearance
and re-appearance. The de-appearance, based on image-LBP forward mapping, is thor-
ough in the sense that not only the identity information but also the soft-biometric in-
formation of the subject is removed. The re-appearance yields face reconstruction with
high fidelity and also enables secure application with a unique encryption key. The re-
appearance is achieved by learning the inverse mapping of the LBP descriptors through
an `0-constrained coupled dictionary learning scheme that jointly learns two overcom-
plete dictionaries in both the pixel and the LBP domains such that inverse mapping from
the LBP domain to the pixel domain is made possible without knowing the mapping
function explicitly. The procedure also comes naturally with high selectivity when re-
constructing the faces with various LBP encryption keys. We have shown the effective-
ness of our proposed approach on the FRGC ver 2.0 database which involves large-scale
fidelity test and face verification experiments using the state-of-the-art commercial and
academic face matchers.

1 Introduction
Local feature descriptors such as SIFT [39, 40], HOG [6], BRIEF [5], FREAK [1], and
LBP [45] are extremely popular in computer vision community nowadays. They map a local
image patch to a highly non-linear representation that is usually invariant or robust to certain
variations, giving rise to higher discriminability or encoding more robust local information
that is suitable for certain computer vision tasks such as detection and recognition.

Since 2011, researchers have been trying to invert such a mapping, going from the de-
scriptor to the image. One of the earliest work is pioneered by Weinzaepfel et al. [58] on
reconstructing an image from its SIFT descriptors. In 2012, E. d’Angelo et al. [7] reconstruct
images from BRIEF and FREAK descriptors, with their later work in [8] showing improved
methods. In 2013, Vondrick et al. [56, 57] visualize HOG descriptor. A more recent work
in 2015 attempts to invert the CNN feature [41] for better understanding the deep image
representations.

There have not been studies on inverting the LBP [45] descriptor. In this work, we will
invoke a coupled dictionary learning paradigm with an `0-constrained optimization to learn
the inverse mapping from the LBP glyph to the original image. Since LBP is invented and
gains popularity in face recognition community [20, 35, 36, 51], we decide to utilize face
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Figure 1: Flowchart of the method. The de-appearance step uses LBP for the forward map-
ping F and obtains the LBP face (glyph) in the middle. The re-appearance step tries to learn
the inverse mapping F−1 from the LBP domain to the pixel domain. The recovered face is
of high fidelity as compared to the original face.

images for showing the effectiveness of our proposed method. It turns out, different LBP
encoding schemes lead to very much different LBP glyphs, making the inverse mapping
that we learn highly selective. This implies that, if the inverse mapping is learned on one
particular LBP encoding scheme, it will only well recover the original image for a query
LBP glyph under the same encoding scheme, but not a different one. Also, LBP glyph is
naturally an ideal way of hiding some of the image details, while preserving rough structure
of the underlying content so that people are still able to tell what is been encoded, but not
the fine details such as the identity and attributes of the subject. Therefore, we will apply the
entire pipeline (forward mapping from image to LBP glyph and inverse mapping from LBP
glyph to image) to face de-appearance and re-appearance tasks.

The study of privacy has gained prominence in the past decade along with the advance-
ment of both the camera hardware and surveillance technology as well as more robust facial
recognition systems (FRS) which can deal with more unconstrained scenarios. Latest FRS
can easily identify subjects even from a very low resolution footage with off-angle faces and
other non-ideal variations such as harsh lighting and facial occlusions. Therefore, applica-
tions that require identities of people in the scene be hidden shall resort to de-appearance
techniques, e.g. Google Streetview and sensitive medical face databases.

Current methods of face de-appearance can be categorized as follows. The naive ap-
proach is to blur or blackout the entire face or the identifiable portion (periocular region
[16, 17, 25, 27, 33, 37]) of the face. Such method either loses the entire information (black-
out), or can be easily attacked by super-resolution or de-blurring techniques to recover the
true identity. A family of more sophisticated approach, called k-same, de-appearances the
query face image by anonymizing it among at least k candidates through low rank approxi-
mation in some domains such as the pixel domain, eigenvector domain, or active appearance
model coefficients domain [43], [11], [10], [12], [13], [50]. Such methods yield much better
visual appearance for the de-appearanced face image. However, one of the biggest caveats
is that we can almost never recover the true identity of the subject from the de-appearanced
face. Moreover, many of these approaches choose not to perform a thorough de-appearance.
For example, soft-biometric traits such as skin color, ethnicity, gender, age, hair style, etc.
are still showing in the de-appearanced image, which may be a disadvantage when it comes
to sensitive information related applications. A more recent work [9] utilizes various soft-
biometric classifiers to preserve high utility after de-appearance. However, the recovery
based on the de-appearanced face image is, again, next to impossible.

Scope: Our face de-appearance paradigm is fundamentally different from many other de-
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identification methods [9, 15] which preserve the face utility or attribute, in the following two
major areas: (1) using others’ method, once the face is de-appearanced, though the utility
is preserved, the original face or subject information can never be recovered, while ours
can still recover the identity information with very high fidelity. (2) We aim for ‘thorough’
face de-appearance such that the de-appearanced face contains no soft-biometrics traits of
the subject, while theirs choose to preserve the face utility. The de-appearance problem we
study in this work is quite different from previously studied ones, although we still use quite
similar terminology. It is hard to put our method and others’ under the same rooftop for
comparison, because we aim at different goals and each is suited for different applications.

The re-appearance studied in this work also differs from other re-identification work. In
literature, especially in surveillance community, re-identification usually refers to the fol-
lowing: “Given an image / video of a person taken from one camera, re-identification is the
process of identifying the person from images / videos taken from a different camera [3].”
Here, our ‘face re-appearance’ relates more to ‘face recovery’ which aims at reconstructing
the pixel domain faces from their LBP glyphs, which were first de-appearanced using LBP
forward mapping.

Specifically, the two applications to be discussed in this work are (1) a thorough face
de-appearance method, and (2) a secure face re-appearance method. Generally speaking,
the more thorough the de-appearance step is, the harder it is for re-appearance to recover
the identity of the face. One extreme example would be blackout. There exists a trade-off
between the thoroughness of the de-appearance step and the recovery capability of the re-
appearance step. Our method provides a very high level of thoroughness in de-appearance
step (both the identity and all soft-biometric information is removed), as well as high fidelity
among re-appearanced faces. Also, we harness the high selectivity of the learned inverse
mapping for different LBP encoding to make the re-appearance step secure, where high-
confidence re-appearance only comes if the correct re-appearance key is applied. All of
these are achieved by the forward mapping from image to LBP glyph and the learned inverse
mapping through coupled dictionary learning.

To the best of our knowledge, this is the very first work that attempts to invert LBP, as
well as its applications on face de-appearance and re-appearance with an emphasis on the
thoroughness of the de-appearance and the security of the re-appearance. Figure 1 shows
the flowchart of our proposed method where F is the forward mapping from image to LBP
glyph, and F−1 is the learned inversion mapping. As can be seen visually, the recovered face
shows high fidelity as compared to the original face.

Previous Work: In the work by Weinzaepfel et al. [58] on reconstructing an image from
its SIFT descriptors, the authors first obtain the SIFT representation of patches from a large-
scale image database, and when the query appearance descriptor comes in, nearest neighbor
search and image-descriptor correspondence can provide the recovered image patch. The
procedure is completed after seamless stitching and smooth interpolation for empty zones.

E. d’Angelo et al. make an attempt on reconstructing two local binary descriptors: BRIEF
and FREAK in [8], which is an extension of their earlier work [7]. In their approach, two
algorithms are proposed. The first algorithm can work on real-valued difference descriptors
by tackling the reconstruction problem as a regularized deconvolution problem. The second
algorithm harnesses some recent findings on 1-bit compressive sensing to reconstruct image
parts from binarized difference descriptors. The authors have shown that the knowledge of
the particular measurement layout of a local binary descriptor is sufficient to infer the origi-
nal image patch without any external information or databases. It is also worth mentioning
that these work [7, 8] apply only to BRIEF and FREAK, but not LBP descriptor. The au-
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thors have provided an explanation in Section 2.2 of [8]. This is due to the fact that LBP,
as conventionally used [45], requires a histogram step after the binarization, and such a step
undermines the spatial awareness of the LBP glyph, which makes any algorithm very hard, if
not at all impossible, to recover the original image. For this same reason, the LBP descriptor
discussed in this paper does not have the final histogram step. We are interested in inverting
the LBP glyph (or the LBP face) as shown in Figure 1.

2 Proposed Method and its Applications
Why is inverting a descriptor hard? It is not an easy task because descriptors usually com-
pacts visual information to achieve invariance or robustness. Invariance and robustness
means that the forward mapping from an image patch to descriptor is many-to-one, which
makes the inversion hard and ill-posed. Additional constraints and / or appropriate priors are
required to arrive at a solution for such a problem. In this work, we invoke a coupled dictio-
nary learning paradigm with an `0-norm constraint to learn the non-linear mapping between
pixel and LBP representations, and vice versa.

Thorough Face De-Appearance:
The intuition behind using LBP for de-appearance is straightforward because LBP is a

local difference operator and most of the COTS FRS cannot deal with LBP faces / glyphs.
They either can not locate the LBP faces from the scene, or the match scores are horribly
low. Therefore, we resort to this simple yet very widely used LBP descriptor for face de-
appearance purposes.

The traditional LBP operator was first introduced by Ojala et al. [45, 49]. All neighbors
that have values higher than the value of the center pixel (pivot point) are given value 1 and
0 otherwise. The binary numbers associated with the neighbors are then read sequentially
to form an 8-bit (or 24-bit for 5× 5 case) string. The binary number is then converted to a
decimal number as the feature assigned to the center pixel. The LBP feature for the center
point (xc,yc) can be represented as: LBP(xc,yc) = ∑L−1

n=0 s(in− ic)2n where in denotes the
intensity of the nth surrounding pixel, ic denotes the intensity of the center pixel, L is the
length of the sequence, and s = 1 if in ≥ ic, otherwise, s = 0.

When converting the bit string to a decimal number, there are many ways to do so de-
pending on the ordering of the neighboring pixels. For instance, the most significant bit
(MSB) is assigned to the top left pixel in the 3×3 patch and the following bits are obtained
sequentially in a counter-clockwise fashion. Apparently, there are 8! = 40,320 ways to order
the 8 surrounding pixels, each one corresponding to a unique key for secure re-appearance
to be discussed.

Secure Face Re-Appearance:
The de-appearance step using LBP is easy to implement, however, the re-appearance step

that maps the LBP glyphs (we call it LBP domain faces) back to the face images (we call it
pixel domain faces) requires more effort. Here, we propose to learn the inverse mapping of
LBP via a coupled dictionary learning scheme.

The LBP operation is a nonlinear mapping1 F :Rd 7−→Rd because of the thresholding
of the neighboring pixels when compared to the center pixel within each local patch. This
forward mapping is many-to-one because different images, as long as the local partial order-
ing of the pixels stays the same, will lead to the same LBP representation. Thus, using the

1d is the vectorized image dimension of the original image crop, which is the same as its LBP glyph.
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inverse mapping F−1 to obtain one single re-appearanced image requires more constraints
or prior information since this is an ill-posed problem.

The ideas of our method are as follows. We can jointly learn an overcomplete dictio-
nary for the pixel domain faces and another for the LBP domain faces such that the sparse
approximation coefficients for a query LBP face can be shared by the pixel domain faces
which can lead to the reconstruction of the re-appearanced face. By doing this, a mapping
between pixel domain image and LBP domain image can be established without explic-
itly knowing the mapping function. The enforcement of the sparsity level as well as the
sharing of sparse coefficient between the two domains are the added constraints that can
uniquely determine the inverse mapping F−1. The first objective is to learn a dictionary for
the pixel domain faces: minimizeD,X ‖Y−DX‖2

F subject to ∀i,‖xi‖0 < K. Similarly, the
second objective is to learn a dictionary for the LBP domain faces: minimizeDLBP,X ‖YLBP−
DLBPX‖2

F subject to ∀i,‖xi‖0 < K. Combining the two objectives and solving them jointly
allows us to enforce a common K-sparse representation. Our primary problem is therefore:

argmin
D,DLBP,X

‖Y−DX‖2
F +‖YLBP−DLBPX‖2

F subject to ∀i,‖xi‖0 < K (1)

Here Y∈Rd×N and YLBP ∈Rd×N are the pixel domain and the LBP domain training images
respectively in matrix form where each column is a vectorized image. Here, d is the dimen-
sionality of the data and N is the number of training images. D ∈Rd×M and DLBP ∈Rd×M

are the two overcomplete dictionaries for the pixel domain and the LBP domain faces, where
M� d is the number of dictionary atoms. X ∈RM×N is the sparse coefficient matrix shared
between the two domains.

Obtaining a consistent sparse encoding between the two domains allows for a more
meaningful reconstruction. Given a novel de-appearanced image yLBP in the LBP domain,
we first obtain the sparse representation x in DLBP. We then obtain the reconstruction using
Dx. By forcing consistent sparse representations x during training, we optimize for a low
reconstruction error for both domains jointly and simultaneously. A simple rearrangement
can lead to solving the formulation using the standard K-SVD dictionary learning approach
as previously observed [14]:

argmin
D,DLBP,X

∥∥∥∥
(

Y
YLBP

)
−
(

D
DLBP

)
X
∥∥∥∥

2

F
subject to ∀i,‖xi‖0 ≤ K (2)

which translates to the standard K-SVD problem where we minimizeD′,X′ ‖Y′−D′X‖2 un-
der ‖xi‖0 ≤ K, with Y′ = (Y>,Y>LBP)

> and D′ = (D>,D>LBP)
>. This method is open set,

enabling reconstruction of any face that is not present in the training set. To learn the op-
timal reconstruction sparsity level for the task, we conduct a pilot experiment in which we
measure the average peak signal-to-noise ratio (PSNR) [21, 22, 24, 25, 29, 31, 38] between
the re-appearanced face and the original face (prior to de-appearance) while increasing spar-
sity. The optimal choice of sparsity for reconstruction is Kr = 8 via cross validation.

3 Experiments
We use the Target Set of the large-scale NIST’s FRGC ver 2.0 database [48], containing 466
different subjects, with a total of 16,028 images.

Face Re-Appearance Fidelity Experiments:
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Figure 2: Re-appearance results on the FRGC target set.
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Figure 3: 8 different orderings and their corresponding LBP images for the same input face.
The MSB is shown in red.

Following the procedure discussed in Section 2, we first de-appearance all the 16,028
face crops of size 32× 32 from the FRGC target set using LBP. The two dictionaries were
pre-trained using 200,000 images from a separate mugshot-type database. Not a single
FRGC face image is observed during the training of the dictionaries. For each de-appearanced
face, we use OMP [47] to get the sparse approximation coefficient from the LBP domain
dictionary, and then use the same coefficient to reconstruct the image in the pixel domain,
thus re-appearance. Figure 2 shows the re-appearance results for 20 random subjects from
the FRGC target set. The average PSNR for the entire target set (16,028 face images) is
16.0015 dB. As can be seen, the proposed dictionary-based re-appearance method yields
high fidelity in reconstruction.

We have previously mentioned that different orderings in formulating the LBP descriptor
can play a role in secure face re-appearance. Figure 3 shows 8 different sequential counter-
clockwise orderings and their corresponding LBP images for the same input face.

We call these 7 LBP variants LBP-S1 to LBP-S7 in addition to the original LBP dis-
cussed in Section 3. The 8 LBP glyphs look entirely different, which gives rise to the secure
re-appearance capability. There are 8! = 40,320 possible orderings for 3×3-patch LBP en-
coding, and each ordering is essentially an encryption key. The basic idea is that, if the joint
dictionary is trained with one particular LBP variant, such dictionary pair can only be used
for re-appearancing, with high fidelity, the de-appearanced face using the same LBP variant.
Figure 4 shows the idea of secure re-appearance. In this case, the dictionary pair is trained on
standard LBP, and when de-appearanced query faces using various LBP variants come, only
the queries using the same LBP variant can yield high PSNR, and others would yield much
lower PSNR. The average PSNR values are shown along with various re-appearance results
in Figure 4 as well as tabulated in Table 1. One can imagine that for encoding LBP using

Type of Ordering LBP LBP-S1 LBP-S2 LBP-S3
Average PSNR 16.0015 14.2344 10.7258 8.9185

Type of Ordering LBP-S4 LBP-S5 LBP-S6 LBP-S7
Average PSNR 8.2662 8.4797 11.9588 14.2227

Table 1: Average PSNR over 16,028 FRGC Target Set face images.
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LBP-S1
PSNR = 14.2344

LBP-S2
PSNR = 10.7258

LBP-S3
PSNR = 8.9185

LBP-S4
PSNR = 8.2662

LBP-S5
PSNR = 8.4797

LBP-S6
PSNR = 11.9588

LBP-S7
PSNR = 14.2227

LBP
PSNR = 16.0015

Original

Figure 4: Re-appearance results of various de-appearanced images using different LBP vari-
ants. High PSNR only occurs when the dictionary and query use the same LBP variant.

larger patch size, e.g. 5× 5, there are 24! = 6.2045× 1023 possible orderings, or unique
encryption keys. To make it even more secure, we can make the key diverse according to
people, instead of a fixed key for everyone in the database. Also, further security measures
are possible by making connections to cancelable biometrics such as [52].

Not surprisingly, we can observe that similar orderings lead to similar re-appearance
performance. The converted decimal number from the bit string is dominated by the most
significant bit (MSB), and therefore, when rotating the bit string (from LBP-S1 to LBP-S7),
the difference (in decimal number) between two bit strings is relatively small if the location
of the MSB is close to each other. That is exactly why, LBP-S1 and LBP-S7 have relatively
higher PSNR compared to the rest of the LBP variants because their MSB are next to that of
the original LBP.

Here, we choose not do the histogram step in LBP because it kills the spatial resolution
and make it impossible to recover. Actually, the way we conduct the procedure is a special
case of histogramming with each bin at every pixel location, which is the finest possible way
of getting the histogram. Also, for applications that the original faces are not accessible by
the end user, the proposed method should be favored. It also makes sure that only the ones
with the right keys can recover the faces. As can be seen in Figure 1, 2, and 4, the recovered
faces greatly resemble the original faces, which is again confirmed by high PSNR. We resort
to this approach due to its simplicity and universality.

Face Verification Experiments:
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VR at 0.1% VR at 1% VR at 10%
FAR FAR FAR EER AUC

Orig. vs. Orig. 32×32 0.349 0.524 0.777 0.170 0.9109
Orig. vs. Orig. 64×64 0.324 0.567 0.757 0.175 0.9030
Orig. vs. Orig. 128×128 0.339 0.513 0.769 0.172 0.9085
Orig. vs. LBP 32×32 0.000 0.002 0.025 0.621 0.3297
Orig. vs. LBP 64×64 0.000 0.003 0.045 0.568 0.4076
Orig. vs. LBP 128×128 0.000 0.002 0.032 0.595 0.3678
Orig. vs. Recon. 32×32 0.046 0.174 0.440 0.320 0.7501
Orig. vs. Recon. 64×64 0.048 0.152 0.402 0.332 0.7323
Orig. vs. Recon. 128×128 0.057 0.161 0.427 0.325 0.7440

Table 2: Performance on FRGC Experiment 1 Evaluation. Experiments using a naive classi-
fier with three image resolutions are evaluated.
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Figure 5: 5(a): ROC curves for matching FRGC target set to themselves, their LBP glyphs,
and the reconstructed counterparts using correct encryption key. 5(b): ROC curves for
matching FRGC target set to the reconstructed counterparts, using various encryption keys.
5(c): ROC curves for matching FRGC target set to their LBP glyphs, and to the reconstructed
counterparts, using various face matchers.

A. Face verification using a naive classifier: We have conducted face verification ex-
periments to see how well can the re-appearanced images be matched to the original ones.
The performance is analyzed using verification rate (VR) at 0.1%, 1% and 10% false accept
rate (FAR), equal error rate (EER), the receiver operating characteristic (ROC) curves, and
the area under the ROC curve (AUC) consolidated in Table 2 and Figure 5(a). We strictly
follow NIST’s FRGC Experiment 1 protocol which involves 1-to-1 matching of 16,028
target images to themselves (∼ 256 million pair-wise face match comparisons). The sim-
ilarity matrix is of size 16,028× 16,028. We use the normalized cosine distance (NCD)
[4, 18, 19, 23, 26, 28, 30, 32, 34, 46, 54, 55, 60] as the metric.

Our baseline is original image vs. original image which should yield the highest possible
performance. To show the effectiveness of using LBP for de-appearance, we match original
images to LBP images. To showcase the effectiveness of re-appearance, we match original
images to the reconstructed images. Three image resolutions2 are used: 32× 32, 64× 64,
and 128×128.

As can be seen, de-appearance yields abysmal verification performance as expected,
when matched against original images, which shows the thoroughness of the proposed ap-
proach. Also, we have demonstrated the effectiveness of the proposed dictionary-based re-

2For 64×64 crop, 500k mugshots are used for dictionary learning, and for 128×128 crop, 1 million are used.
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VR at 0.1% VR at 1% VR at 10% Rank-1
FAR FAR FAR EER ID Rate AUC

Orig. vs. Recon. (correct LBP key) 0.046 0.174 0.430 0.320 0.3456 0.7501
Orig. vs. Recon. (incorrect LBP key s1) 0.002 0.029 0.163 0.426 0.0153 0.5945
Orig. vs. Recon. (incorrect LBP key s2) 0.002 0.023 0.128 0.478 0.0088 0.5325
Orig. vs. Recon. (incorrect LBP key s3) 0.001 0.009 0.102 0.499 0.0018 0.4961
Orig. vs. Recon. (incorrect LBP key s4) 0.001 0.012 0.107 0.513 0.0011 0.4900
Orig. vs. Recon. (incorrect LBP key s5) 0.001 0.012 0.101 0.509 0.0021 0.4931
Orig. vs. Recon. (incorrect LBP key s6) 0.002 0.047 0.178 0.441 0.0076 0.5843
Orig. vs. Recon. (incorrect LBP key s7) 0.002 0.030 0.218 0.402 0.0107 0.6324

Table 3: Performance on FRGC Experiment 1 Evaluation. Matching original images with
reconstructions using various LBP keys.

appearance method by showing good performance when matching the re-appearanced faces
to the original ones, while previous methods do not have the capability at all. In addition, we
see that image resolution does not seem to affect the verification performance too much.

For the ROC curves, as we all know that a random chance would give a diagonal line,
and any method that leads to a curve below the line can be improved by simply flipping the
decision rule. However, under the circumstance that the system is agnostic about whether the
input image is raw pixel image or LBP glyph, it will produce consistent decision regardless
and it is possible to have an ROC curve below the diagonal line. The access system does
not have the prior information whether the incoming query image is a LBP glyph or a pixel
domain image. It also does not have the ensemble knowledge and characteristics of the entire
testing set, like what the ROC curve tries to capture. All it sees is a single matching score,
and there is no reason for it to ‘flip’ the decision strategy based upon just a single query
image at run-time.

In addition, we carry out experiments that match original images with reconstructed im-
ages using different encryption keys, following the ones shown in Figure 3. The results are
reported in Table 3 and the ROC curves are shown in Figure 5(b). We can observe that, only
reconstructing using the correct encryption key can yield high face verification performance,
which is in line with the reconstruction fidelity observed in Figure 4 and Table 1.

B. Face verification using the state-of-the-art commercial and academic face matchers:
In the following set of experiments, we utilize three state-of-the-art commercial matchers
(CM) and one academia matcher for face verification. The three commercial matchers are
paraphrased as CM1, CM2, and CM3. The academic face matcher we use is OpenFace [2],
which is an open-source Python and Torch implementation of Google’s FaceNet convolu-
tional neural network (CNN) architecture [53]. With a slight modification on the network
structure, we train our model by combining the 3 largest publicly-available face recognition
datasets: FaceScrub [44], CASIA-WebFace [59], and MegaFace [42]. Once the model is
trained, we pass the testing image through the network and extract a 4096-dimensional fea-
ture vector from the top-most fully connected layer. It is also worth noting that CM2 cannot
work with tightly cropped faces as those shown in Figure 2 and 4. Therefore, we plaster the
LBP (de-appearanced) face and the reconstructed (re-appearanced) face back to the original
loosely cropped image, as depicted in Figure 6. As can be seen, CM2 may or may not harness
the strong background information outside the square tight crop, among the original image,
the plastered-back LBP glyph, and the plastered-back recovered face. This is something we
don’t have control over and we report the results from the CM2 as is.

We first match the original faces from the FRGC to the LBP counterparts, and then we
match the original faces to the recovered one. The ROC curves are shown in Figure 5(c)
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Naive CM1 CM2 CM3 CNN
Original vs. LBP 0.3297 0.6567 0.5893 0.5984 0.6624
Original vs. Recon. 0.7501 0.9289 0.9181 0.9691 0.8544

Table 4: Performance (AUC) on FRGC. Matching original images with LBP glyphs and
reconstructions using a naive classifier, 3 commercial and 1 academic face matchers.

Figure 6: For CM2, loosely cropped faces are provided. We plaster back the square LBP
glyph and the recovered face to the original face image.

and the AUC for each method is consolidated in Table 4. From the results we can have the
following observations: (1) even the state-of-the-art commercial and academic face matchers
cannot successfully match the original faces to the LBP faces with high accuracy, which
shows the efficacy of our thorough face de-appearance step; (2) when matching the original
faces to the recovered ones, using sophisticated matchers does dramatically improve on the
naive classifier and we have reached AUC over 90% using CM1, CM2, and CM3, which
demonstrate the high fidelity of our face re-appearance step.

4 Conclusions

We have proposed a novel method for inverting the LBP descriptor. The success of the in-
version gives rise to two face-related applications: face de-appearance and re-appearance.
The de-appearance based on image-LBP forward mapping is thorough in the sense that not
only the identity information, but also the soft-biometric information of the subject is re-
moved. The re-appearance yields face reconstruction with high fidelity and also enables
secure application with unique encryption key. The re-appearance involves leaning the in-
verse mapping of the LBP descriptors through an `0-constrained coupled dictionary learning
paradigm that jointly learns two overcomplete dictionaries in both the pixel and the LBP do-
main such that inverse mapping F−1 from the LBP to the pixel domain is made possible. We
have showcased the effectiveness of our proposed approach on the FRGC ver 2.0 database
which involves large-scale fidelity test and face verification experiments using the best com-
mercial and academic face matchers. Future work may include developing an approach that
can blindly invert the LBP descriptor without knowing the encoding schemes at all.
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