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Abstract

Learning hash functions for high dimensional multi-modal data is of great interest for
many real-world retrieval applications in which data comes from diverse heterogeneous
sources. In this paper, we propose a novel probabilistic semi-supervised multi-modal
retrieval model, by which we can learn both the binary codes and their dimension from
the available training data. We also develop a new Variational Bayes (VB) algorithm for
learning the parameters of the proposed model. The experiments on two real-world data
sets show the superiority of the proposed method over other state-of-the-art algorithms
for learning binary codes.

1 Introduction
In recent years, multi-modal data has grown explosively due to the prevalence of social
media (e.g., Youtube, Facebook, Flicker, etc). In such data, information comes from various
sources such as images with textual descriptors, videos associated with audio signals, etc.
Hence, each modality corresponding to a distinct input source can provide different types of
information [1, 2, 15, 16, 26, 27].

Content-based multi-modal retrieval systems are very important to many applications of
practical interest, such as obtaining relevant reviews and trailers of a movie using its poster
or retrieving a set of images that best visually illustrate a given text. Such systems return the
nearest neighbors of a given object query in the database based on the similarity between the
query and of objects in that database.

A naive solution for searching the nearest neighbors requires the scan of all objects in
the database that is obviously not scalable for large datasets with high dimensional feature
vectors. On the other hand, the performance of approximate nearest neighbor searching
algorithms such as tree-based methods is desirable for low-dimensional data, and their per-
formance is unsatisfactory in the presence of high-dimensional feature vectors and does not
guarantee faster search compared to linear scan [21].
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Among the various methods that have been proposed for nearest neighbor search [21],
hashing-based methods have gained popularity in recent years [3, 5, 8, 10, 11, 14, 24, 35, 38,
39, 40]. The main advantage of hashing-based methods is that they encode data into binary
features that lead to computational efficiency and low storage requirements [29, 33].

A broad range of hashing techniques can be grouped into unsupervised, semi-supervised,
and supervised categories. Unsupervised hashing schemes aim at projecting nearby points
in the original space to similar binary codes in the Hamming space (the space of binary
codes) [6, 7, 22, 35].

On the other hand, supervised hashing methods map the original features to compact
binary codes such that label based similarities are preserved in the Hamming space [10, 13,
14, 23, 29].

In semi-supervised hashing algorithms, the provided side information is available in bi-
nary mode (similar/dissimilar pairs). These algorithms try to find a projection of the data into
the space of binary codes such that the Hamming distance between the codes reflects the sim-
ilarity/dissimilarity relations between the similar/dissimilar pairs in the training set [14, 17].

Despite the increasing amount of multi-modal data, most existing hashing methods can
only deal with unimodal data and consequently, they are not able to take advantage of the
information of the various modalities for improving search accuracy and doing cross-view
retrieval, e.g., text-to-image queries. Recently, some papers have been proposed to address
this issue [12, 18, 25, 32, 36, 37]. Kumar and Udupa [12] extended spectral hashing [34] for
cross-view similarity search. Nitish and Salakhutdinov proposed a deep Boltzmann machine
for multi-modal feature learning and retrieval [25]. Rastegari et al. [20] utilized multiple
SVMs for minimizing the Hamming distance between binary codes obtained from two dif-
ferent views. Very recently, Ozdemir and Davis proposed a probabilistic framework called
IIBP for multi-modal retrieval using the Indian Buffet Process (IBP) model [18]. Using the
IBP as a Bayesian nonparametric model, the IIBP is capable of learning both the binary
codes and their dimension from the data.

Although the IIBP model is more accurate than other state of the art multi-modal retrieval
methods, an important shortcoming of this model is that it cannot incorporate the information
of the similarity/dissimilarity constraints into the posterior distribution of the parameters due
to the use of Markov Chain Monte Carlo (MCMC) [18] algorithm.

To address this issue, in this paper, we propose a non-parametric Bayesian framework
for multi-modal hash learning that takes into account the distance supervision (similar-
ity/dissimilarity constraints). Our model embeds data of arbitrary modalities into a single
latent binary feature with the ability to learn the dimensionality of the binary feature using
the data itself. Given supervisory information (labeled similar and dissimilar pairs), we pro-
pose a novel discriminative term and develop a new Variational Bayes (VB) [31] algorithm
which incorporates that term into the proposed Bayesian framework.

The rest of this paper is organized as follows. In Section 2, we present the proposed
multi-modal hash learning framework. In Section 3, we introduce a novel VB algorithm to
compute the posterior distribution of the parameters and the hidden variables. Experimental
results are presented in Section 4. Finally, we conclude our work in Section 5.

2 Proposed Method
To facilitate the discussion, we assume we have two-modal data (e.g., images with both
visual and textual descriptors), but our method can be easily extended to multi-modal data.
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Let TTT = [XXX ,YYY ] be the observed bi-modal data matrix where XXX = [x1,x2, ...,xd ]M×d and YYY =
[y1,y2, ...,yd ]N×d denote the first modal and the second modal data matrix respectively, and
ZZZ = [z1,z2, ...,zd ]K×d denotes the latent binary code matrix. We are also given two sets of
pairwise constraints which are defined as

S = {(i, j) | (xi,yi) and (x j,y j) are similar},
D = {(i, j) | (xi,yi) and (x j,y j) are dissimilar},

where S(D) denotes the set of similar (dissimilar) pairwise constraints.
To be fully Bayesian, we must define appropriate prior and likelihood distributions for

all observed (XXX ,YYY ) and latent (ZZZ) variables. We assume each data point is independent of
other data points given the latent binary codes and it is generated by a linear Gaussian model.
More precisely, we have:

P(XXX ,YYY |ZZZ) =
d

∏
i=1
N (xi;WWW xxxzi,γ−1

x III)N (yi;WWW yyyzi,γ−1
y III) (1)

where III denotes the Identity matrix (the identity matrix is always assumed to be the appro-
priate size), WWW xxx ∈ RM×K and WWW yyy ∈ RN×K are the latent feature matrices, and γx and γy are
the noise’s precision values for each modality. In the above model, the elements of each
binary code zi can be considered as indicators of the possession of a corresponding column
(feature) of WWW xxx(WWW yyy) for xi(yi).

For learning both the latent binary codes and their dimension from data, we put a non-
parametric prior distribution on the binary matrix ZZZ by introducing auxiliary variables ΠΠΠ =
{πk}K

k=1 drawn from Beta distribution as

πk ∼ Beta(a/K,b(K−1)/K) (2)

where a,b are the hyper-parameters and the integer K defines the largest possible dimension
for the binary latent features ( by letting K→ ∞, the dimensionality of the binary codes can
be learned from the training data [28]). Then, we model the binary matrix ZZZ as d draws from
a Bernoulli process parameterized by ΠΠΠ that is generated as

zi ∼
K

∏
k=1

Ber(zki;πk), i = 1, ...,d (3)

where zki denotes the k-th element of the binary vector zi and Ber denotes the Bernoulli
distribution (we obtain the IBP model by integrating out ΠΠΠ and letting K→ ∞). We also put
conjugate prior distributions on the free parameters WWW x,WWW y,γx and γy as

P(WWW x;Σx)∼
K

∏
k=1
N (wk

x;0,Σx), P(WWW y;Σy)∼
K

∏
K=1
N (wk

y;0,Σy), (4)

P(γx;ax,bx)∼ Ga(ax,bx), P(γy;ay,by)∼ Ga(ay,by), (5)

where Ga denotes the Gamma distribution, wk
x and wk

y denote the k-th column of the matrices
WWW xxx and WWW yyy respectively and ax,bx,ay,by,Σx,Σy are the hyper-parameters of the proposed
model. We show a graphical representation of the proposed model in Figure 1.
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Figure 1: The graphical representation of the proposed Bayesian model (blue circles denote
observations).

3 Posterior Inference
Since computing the exact posterior distribution of the parameters is intractable, in this sec-
tion, we approximate that posterior distribution by developing a novel VB algorithm which
incorporates the information of similarity/dissimilarity constraints into posterior distribution
inference.
In our VB framework, we truncate the length of the binary codes (K) and we set it to a finite
but large number. If K is large enough, the analyzed multi-modal data using this number of
bits, will reveal less than K bits (see section 4).
Let Ξ = [WWW xxx,WWW yyy,ΠΠΠ,γx,γy] and Φ = [a,b,ax,bx,ay,by,Σx,Σy] denote the set of parameters
and the set of hyper-parameters respectively, the joint probability of data and the unknown
variables can be represented as

P(XXX ,YYY ,ZZZ,Ξ |Φ) =
K

∏
k=1

d

∏
i=1

P(zki | πk)
K

∏
k=1

p(wk
x;Σx)p(wk

y;Σy)P(πk;a,b)×

d

∏
i=1

P(xi | zi,WWW xxx,γx)P(yi | zi,WWW yyy,γy)P(γx;ax,bx)P(γy;ay,by) (6)

We use a fully factorized variational distribution for the latent variables as

q(ΠΠΠ,ZZZ,Ξ) =
K

∏
k=1

qπk(πk)
d

∏
i=1

K

∏
k=1

qzki(zki)
K

∏
k=1

qwk
x
(wk

x)
K

∏
k=1

qwk
y
(wk

y)qγx(γx)qγy(γy) (7)

Because of conjugacy between the prior and the likelihood distributions, we can easily spec-
ify the form of the approximate posterior distributions which goes as follows:

qπk(πk) = Beta(πk;ak,bk), qzki(zki) = Ber(zki; pki), qwk
x
(wk

x) =N (wk
x; µk

x ,Σ
k
x)

qwk
y
(wk

y) =N (wk
y; µk

y ,Σ
k
y), qγx(γx) = Gamma(a′x,b

′
x) qγy(γy) = Gamma(a′y,b

′
y), (8)

where ΘΘΘ = {pki,ak,bk,µk
x ,Σk

x,µk
y ,Σk

y,a
′
x,b
′
x,a
′
y,b
′
y} denotes the set of posterior parameters

which are determined by VB algorithm.
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In order to incorporate the information of the similarity/dissimilarity constraints into the
VB algorithm, we first define a regularizer for the binary code zi as

α(zi) =
1
|Di| ∑

j:(i, j)∈D
d(zi,z j)−

1
|Si| ∑

j:(i, j)∈S
d(zi,z j) (9)

where d(zi,z j) denote the divergence (distance) function between two binary codes zi and
z j, and |Si|(|Di|) is defined as the number of data points which are similar (dissimilar) to
the i-th data point. Intuitively, for each binary code z, α(z) should be large such that it best
agrees with those constraints.

In a Bayesian framework, the parameters are random variables, and the notion of diver-
gence between random variables can be replaced with the divergence between their corre-
sponding posterior distributions. In our case, we use Kullback-Leibler (KL) divergence [9] to
measure the distance between the posterior distributions of two binary codes. Hence, α(zi)
is written as

α(zi) =
1
|Di| ∑

j:(i, j)∈D
KL(qzi(zi)||qz j(z j))−

1
|Si| ∑

j:(i, j)∈S
KL(qzi(zi)||qz j(z j)) (10)

where KL(p||q) denotes the KL divergence between two distributions p and q.
By defining the regularizer Ω(ZZZ) = ∑d

i=1 α(zi) for the binary code matrix ZZZ using the set
of similar/dissimilar pairs, the proposed regularized VB algorithm can be represented as the
following optimization problem.

Θ̂ΘΘ = argmax
ΘΘΘ

Eq(ΠΠΠ,ZZZ,Ξ)[logP(XXX ,YYY ,ZZZ,Ξ |Φ)]+H[q(ΠΠΠ,ZZZ,Ξ)]+λΩ(ZZZ) (11)

where Eq[.] denotes the Expectation operator respect to the distribution q, and H[.] and λ de-
note the Entropy operator and the regularization parameter respectively. The VB algorithm
simply solves the above optimization problem using the Coordinate Descent method. Since
all distributions belong to the exponential family distributions, it can be shown that opti-
mizing (11) with respect to the posterior distribution of each parameter corresponds to [31],

logq(Ξi) = EΞ−i [logP(XXX ,YYY ,ZZZ,Ξ |Φ)]+ c, (12)

where Ξi denotes the i-th posterior parameter, c is the summation of all terms which are
independent of Ξi, and the expectation is taken over all the parameters except Ξi.

The update equation for each posterior parameter is as follows (we omit the details due
to the lack of space). It is worth noting that if either the textual or the visual component
is missing, we can simply integrate out the missing one by omitting the corresponding data
term from the equations.

Update for ΠΠΠ:

It is easy to show that ak and bk can be updated as

ak = a/K +
d

∑
i=1

pki, bk = b(K−1)/K +d−
d

∑
i=1

pki (13)
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Update for ZZZ:
Because of the existence of the regularizer for the posterior parameters of the binary matrix
ZZZ, we cannot use Eq. 12 to derive the update equation for the q(ZZZ). Instead, we reformulate
the objective function of Eq. 11 as a function of the posterior parameters of ZZZ and directly
solve the induced optimization problem. It is worth to note that in expanding the regularizer
α(zi), we consider the second argument of KL(.||.) to be a fixed deterministic value. It can
be shown that we can update pki as pki = νki/(νki +ν ′ki) where

νki =exp
{ a′x

2b′x

(
2x>i µk

x −
(
(µx

k )
>(µx

k )+ tr(Σk
x)
))}

exp
{ a′y

2b′y

(
2y>i µk

y −
(
(µy

k )
>(µy

k )+ tr(Σk
y)
))}

× exp{〈logπk〉}× exp{ λ
|Di| ∑

j:(i, j)∈D
log pk j−

λ
|Si| ∑

j:(i, j)∈S
log pk j} (14)

and

ν ′ki = exp{〈log(1−πk)〉}exp{ λ
|Di| ∑

j:(i, j)∈D
log(1− pk j)−

λ
|Si| ∑

j:(i, j)∈S
log(1− pk j)} (15)

where tr(.) denotes the trace operator.

Update for WWW xxx and WWW yyy:

In the following, we define x−k
i ≡ xi−〈WWW xxx〉−k〈zi〉−k, and y−k

i ≡ yi−〈WWW yyy〉−k〈zi〉−k, where
〈WWW xxx〉−k,〈WWW yyy〉−k, and 〈zi〉−k are the matrices/vector with the k-th column/element removed.
µx

k and Σx
k are updated as

Σx
k =

(
a′x
b′x

d

∑
i=1

pkiIII +Σ−1
)−1

, µx
k = Σx

k

(
a′x
b′x

d

∑
i=1

pki〈x−k
i 〉
)

(16)

Similarly, µy
k and Σy

k are updated as

Σy
k =

(
a′y
b′y

d

∑
i=1

pkiIII +Σ−1
)−1

, µy
k = Σy

k

(
a′y
b′y

d

∑
i=1

pki〈y−k
i 〉
)

(17)

Update for γx, and γy:
It is easy to show that a′x,b

′
x can be updated as

a′x = ax +dM/2, b′x = bx +
1
2

M

∑
i=1

d

∑
j=1

βi j, (18)

where

βi j =x2
i j−2xi j

K

∑
k=1

(µk
x )i pk j +

( K

∑
k=1

(µk
x )i pk j

)2
+

K

∑
k=1

(Σk
x)ii(pk j)(1− pk j) (19)

where (x)i denotes the i-th element of the vector x and (X)ii denotes the i-th element on the
main diagonal of the matrix X . Similarly, a′y,b

′
y is also updated in the same fashion.
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Algorithm 1 Obtaining binary code for new observation
Require: x∗,y∗,q(WWW xxx),q(WWW yyy),q(γx),q(γy),q(Π),

1: set z = 0 and index set I = /0.
2: for k = 1,2, ...,K do
3: set η+

k =− ax
2bx
‖x∗−µk

x‖2
2−

ay
2by
‖y∗−µk

y‖2
2 + logΓ(ak +1)+ logΓ(bk)

4: set η−k =− ax
2bx
‖x∗‖2

2−
ay
2by
‖y∗‖2

2 + logΓ(ak)+ logΓ(bk +1)
5: end for
6: while maxk η+

k −η−k > 0 do
7: set k′ = argmax

k
η+

k −η−k , I ← I ∪{k′}, zk′ = 1, η+
k =−∞

8: for all k 6∈ I do
9: set η+

k =− ax
2bx
‖x∗−µµµxxx

I −µk
x‖2

2−
ay
2by
‖y∗−µµµyyy

I −µk
y‖2

2 + logΓ(ak +1)+ logΓ(bk)

10: set η−k =− ax
2bx
‖x∗−µµµxxx

I‖2
2−

ay
2by
‖y∗−µµµyyy

I‖2
2 + logΓ(ak)+ logΓ(bk +1)

11: end for
12: end while
13: return z

Prediction for New Observations

Given q(ΠΠΠ,Ξ) , the binary code z∗ can be inferred for a new observation, (x∗,y∗) , using
a MAP inference algorithm. Hence we maximize logP(z∗|x∗,y∗) by marginalizing out the
variables ΠΠΠ,WWW xxx,WWW yyy,γx, and γy:

z∗ = argmax
z

log
∫

P(z|x∗,y∗,ΠΠΠ,WWW xxx,WWW yyy,γx,γy)dΠΠΠdWWW xxx dWWW yyy dγx dγy (20)

Since the above integration cannot be computed in closed form, we approximate it by re-
placing WWW xxx,WWW yyy,γx,γy with their posterior mean and integrating out ΠΠΠ. Hence, the above
optimization problem can be casted as:

z∗ = argmax
z

− a′x
2b′x
‖x∗−µµµxxxz‖2

2−
a′y
2b′y
‖y∗−µµµyyyz‖2

2 +
K

∑
k=1

(
logΓ(ak + zk)+ logΓ(bk +1− zk)

)
,

s.t. z ∈ {0,1}K (21)

where µµµxxx = [µ1
x , ...,µK

x ], and µµµyyy = [µ1
y , ...,µK

y ], and Γ(.) denotes the Gamma function. Intu-
itively, the first two terms in Eq. 21 are data dependent terms, and the last term corresponds
to the nonparametric penalty. More precisely, the value of the last term will be very small
for low-probability ΠΠΠ elements, as learned through VB inference.
Since (21) is a combinatorial optimization problem, we use a greedy algorithm (Algorithm 1)
similar to Orthogonal Maching Persuit (OMP) [30] to solve (21). In Algorithm 1, µµµ∗I de-
notes the subvector of µµµ∗ formed by the dimensions indexed by I. Intuitively, we initialize z
with zero and sequentially set each entry of z to one, scoring each entry to determine which
to set to one. As can be seen from Algorithm 1, the computational complexity of obtaining
binary code for a query is O(max(M+N)×K2).
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Figure 2: The result of category retrieval for text-to-image queries. (a) PASCAL-Sentence
Dataset; (b) SUN Dataset (Euclidean ground truth computed from visual data); (c) SUN
Dataset (Class label ground truth)
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Figure 3: The result of category retrieval for image-to-image queries. (a) PASCAL-Sentence
Dataset; (b) SUN Dataset (Euclidean ground truth computed from visual data); (c) SUN
Dataset (Class label ground truth)

4 Experimental Results

We evaluate the proposed method on two benchmark bi-modal datasets: (1) The PASCAL-
Sentence 2008 dataset [4] consists of 1000 images categorized into 20 classes. For this
dataset, we used the precomputed visual and textual features provided by Farhadi et al. [4].
(2) The SUN-Attribute dataset [19] contains 102 attribute labels for each of the 14340 images
from 717 categories. Following [18], for this dataset, we reduced the dimensionality of visual
features from 19080 to 1000 by random feature selection. We also compute the attribute
features by averaging the binary labels from multiple annotators.

We compare the performance of the proposed method (PM) against five state-of-the-art
hashing methods, including four unsupervised methods locality sensitive hashing (LSH) [6],
multi-modal deep Boltzmann machine (MDBM) [25], predictable dual view hashing (PDH) [20],
and Integrated Indian Buffet Process (IIBP) [18] and two semi-supervised methods, Super-
vised Hashing with kernels (KSH) [14], and Iterative Quantization with supervised embed-
ding (ITQ-S) [7]. Since LSH, KSH, and ITQ-S do not support cross-view queries, we
applied them on single-view data. We initialized our model to use K = 50 number of bits
for both datasets, though as the results show (Figure 1), only a small subset were ultimately
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Figure 4: Left: Inferred 〈ΠΠΠ〉 for the PASCAL-Sentence dataset, Right: Inferred 〈ΠΠΠ〉 for the
SUN-Attribute dataset.

used (other hashing methods were trained with the same code length K). We also randomly
initialized the posterior parameters and run VB five times, selecting the run with the highest
likelihood. The regularization parameter λ is tuned to an appropriate value on each dataset.
All Gamma priors are set as Ga(10−6,10−6) to make the prior distributions uninformative.
The parameters a,b of the Beta distribution are set with a = K and b = K/2 (many other
settings of a and b yield similar results). We also set the hyper-parameters Σx/Σy to the
empirical covariance of the visual/textual training data respectively. We use the Gaussian
RBF kernel k(x,y) = exp(−‖x− y‖2

2/2σ2) for KSH and the kernel parameter σ is tuned to
an appropriate value on each dataset. We randomly select half of the data points for training
and the other half as test set for both datasets. All images in the test segment were used as
both image and text queries.

We need to generate side information in the form of pairwise training instances. We
sample similar pairs by randomly selecting two instances from the same class and dissimilar
pairs by choosing two instances from different classes. We randomly sample 20000 similar
pairs and 20000 dissimilar pairs from the training set of each dataset.

For comparison purposes, we report the results of different methods via precision-recall
curve as an accuracy measure. Since both datasets have multiple categories, we report
mean precision and recall (by varying the number of top-retrieved samples, we can draw
a precision-recall curve).

As can be seen from the Figures 2 and 3, Two major points can be inferred from the
results. (i) Not surprisingly, the proposed method outperforms the other multi-modal hashing
methods. The improvement in performance compared to MDBM, PDH, and IIBP is due to
the fact that these methods do not have the similarity preserving property while PM can
utilize the available similarity/dissimilarity side information. (ii) The proposed method has
better performance than other semi-supervised hashing methods KSH and ITQ-S because
they cannot exploit the correlation between two different visual and textual modalities of
data.

In order to demonstrate the ability of the proposed method to learn the number of hash
codes, we plot the sorted values of 〈ΠΠΠ〉 for both datasets, inferred by the algorithm (Figure
4). As can be seen, the proposed VB algorithm inferred approximately 26 and 42 number
of bits for PASCAL-Sentence and SUN-Attribute datasets respectively, fewer than the 50
initially provided.
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5 Conclusion
We proposed a probabilistic semi-supervised binary hashing model for multi-modal data.
The experimental results confirmed the improvements of our method over previous meth-
ods in the search accuracy of two multi-modal retrieval benchmark datasets. In our future
work, we would like to develop a stochastic variational inference algorithm for binary feature
learning on very large scale datasets.
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