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Abstract

In this work, we propose a new algorithm for boosting Deep Convolutional Neural
Networks (BoostCNN) to combine the merits of boosting and these networks. To learn
this new model, we propose a novel algorithm to incorporate boosting weights into the
deep learning architecture based on least square objective function. We also show that
it is possible to use networks of different structures within the proposed boosting frame-
work and BoostCNN is able to select the best network structure in each iteration. This
not only results in superior performance but also reduces the required manual effort for
finding the right network structure. Experiments show that the proposed method is able
to achieve state-of-the-art performance on several fine-grained classification tasks such
as bird, car, and aircraft classification.

1 Introduction
Deep convolutional neural networks (CNNs) have recently produced outstanding results

in learning image representations for several vision tasks including image classification
[15, 24, 41] and object detection [12, 16, 31]. These neural networks usually consist of
several components including convolutional, fully connected and pooling layers. By stack-
ing several of these layers, deep CNNs are capable of learning complex features that are
highly invariant and discriminant [24, 37, 38, 39, 44]. Krizhevsky et al. [24] proposed an
eight layer deep network architecture that produced state-of-the-art performance on the Ima-
geNet Challenge [32]. Given the success of this network, it has been applied widely to many
other problems such as video classification [20], face recognition [40] and action recognition
[28]. However, the optimal image representation for each computer vision task is unique and
finding the optimal deep CNN structure for extracting that representation is a challenging
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problem. There are some general guidelines, inspired by biological vision systems, for de-
signing these deep networks such as putting convolutional layers early in the network. These
guidelines, however, do not address how to set structural parameters of the networks such as
the number of layers, number of units in each layer or the size of the receptive fields in the
pooling layers. As a result designing a new network can take weeks of trial-and-error.

To address this design challenge, we propose to combine boosting and deep CNNs. The
idea is to leverage the ability of boosting to combine the strength of multiple weaker learners
to simplify the complicated design process of deep CNNs. This characteristic of boosting
has been shown to be very significant for several Computer Vision tasks. For example in
the Viola and Jones face detector [42] boosting searches a very large pool of simple clas-
sifiers (thresholds on Haar wavelet responses) and trains a classifier that is able to detect a
complex object such as human face. Our approach is also motivated by the successful com-
bination of decision trees [29] and boosting. As in the case of CNNs, the design of decision
trees is not straightforward, e.g. what is the optimal depth of a trees? how many branches
should there be per node? what is the optimal criteria for splitting tree nodes? These are all
important aspects of learning a decision tree and much research has been devoted to these
questions in the 1990s. For example there are several proposals for node splitting criteria
such as Gini impurity, information gain [26] and there are several tree induction algorithms
such as CART [3] or C4.5 [30]. Today, boosted decision trees [9, 10, 11] have eliminated
most of these problems via an optimal weighted vote over decision trees that are individually
sub-optimal. Similar to the success story of boosted decision trees, we believe that combina-
tion of boosting and deep learning can significantly reduce the challenges in designing deep
networks.

The idea of boosting neural networks or, more generally, working with ensembles of neu-
ral networks has been around for many years; see for example [1, 5, 6, 7, 8, 14, 19, 34, 35,
36, 46]. All these works demonstrated advantages of using an ensemble of networks over us-
ing a single large network. These works, however, either rely on simple averaging of several
networks or rely on some heuristic weighting mechanism to impose boosting weights in the
training process. In addition, some of these methods do not scale to the object recognition
tasks that pervade the modern computer vision literature.

In this work, we propose a new algorithm for boosting deep networks (BoostCNN) to
combine the merits of boosting and deep CNNs. To learn this new model, we propose a
novel algorithm to incorporate boosting weights into the deep learning architecture based
on least square objective functions. Experiments show that the proposed method is able to
achieve state-of-the-art results on several fine-grained classification task as such bird, car,
and aircraft classification. Finally we show that it is possible to use networks of different
structures within the proposed boosting framework and BoostCNN is able to find the best
network in each iteration. This not only results in superior performance, but also eliminates
the required manual effort for finding the right network structure.

2 Multiclass boosting

We start with a brief overview of multiclass boosting. A multiclass classifier is a mapping
F : X → {1 . . .M} that maps an example xi to its class label zi ∈ 1 . . .M. Since this is not
a continuous mapping, a classifier F(x) is commonly trained through learning a predictor
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f : X → Rd for some d. The classifier F(x) is then implemented by

F(x) = arg max
k=1...M

〈yk, f (x)〉, (1)

where yk is a unit vector that represents label of the kth class and 〈·, ·〉 is the dot product.
For example in binary classification, labels are y1 = +1 and y2 = −1 and (1) is equiva-

lent to the popular F(x) = sign[ f (x)] decision rule. Another example is one-vs-all multiclass
classifiers. In this method, for each class k, a predictor fk(x) : X → R is trained to dis-
criminate between examples of that class versus others. In order to classify a new example
x̂, fk(x̂) is computed for all k = 1 . . .M and the class of largest predictor is declared as the
label. This procedure is equivalent to (1) by defining f (x) = [ f1(x) . . . fM(x)] ∈ RM and
yk = 1k ∈RM , i.e. kth element is one and the rest are zero. In general, the choice of labels are
not restricted to the canonical basis in RM and it is possible to use any set of M distinct unit
vectors y1 . . .yM ∈ Rd [33]. For simplicity, in the rest of this paper, we assume that d = M
and yk = 1k.

Multiclass boosting is a method that combines several multiclass predictors gi :X →Rd

to form a strong committee f (x) of classifiers, i.e., f (x) = ∑N
t=1 αtgt(x) where gt and αt

are the weak learner and coefficient selected at tth boosting iteration. There are several
approaches for multiclass boosting such as [17, 27, 33] and we use GD-MCBoost method
of [33] in this paper. GD-MCBoost trains a boosted predictor f (x) by minimizing risk of
classification

R[ f ] = EX ,Z{L(z, f (x))} ≈ 1
‖D‖ ∑

(xi,zi)∈D
L(zi, f (xi)), (2)

where D is a set of training examples and

L(zi, f (xi)) =
M

∑
j=1, j 6=zi

e−
1
2 [〈yzi , f (xi)〉−〈y j , f (xi)〉]. (3)

The minimization is via gradient descent in function space. GD-MCBoost starts with f (x) =
0 ∈ Rd ∀x and iteratively computes the directional derivative of the risk, (2), for updating
f (x) along the direction of g(x)

δR[ f ;g] =
∂R[ f + εg]

∂ε

∣∣∣∣
ε=0

=− 1
2‖S‖ ∑

(xi,zi)∈D

M

∑
j=1

g j(xi)w j(xi), (4)

where

wk(xi) =

{
−e−

1
2 [ fzi (xi)− fk(xi)] k 6= zi

∑M
j=1| j 6=k e−

1
2 [ fzi (xi)− f j(xi)] k = zi

(5)

GD-MCBoost then selects/trains a weak learner g∗ that minimizes (4),

g∗ = argmin
g∈G

δR[ f ;g], (6)

and compute the optimal step size along g∗,

α∗ = argmin
α∈R
R[ f +αg∗], (7)

using a line search. The boosted predictor f (x) is finally updated as

f = f +α∗g∗. (8)
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3 Boosting convolutional neural networks
Combining boosting and convolutional neural networks is possible by using convolutional
neural networks (CNN) as weak learners in GD-MCBoost algorithm. In this case, the weak
learner g(x) ∈RM is a deep network, e.g. Alex-Net [24] without the last soft-max loss layer.
Using CNNs as weak learners (base-learners) requires training CNNs to minimize (4) in
each iteration of boosting. However, the learning algorithms for CNNs are typically based
on minimizing the error rate, e.g. log-likelihood or soft-max and these objective functions
are independent of the boosting weights and can be very different from (4). A possible
solution is to replace the soft-max loss layer with a layer to directly optimize (4) in the
back-propagation algorithm. However, this is not practical and diverges quickly as (4) is
unbounded, e.g. scaling g(x) can make it infinite.

In order to address this issue, we first note that δR[ f ;g] of (4) is equivalent to

δR[ f ;g] =− 1
2‖D‖ ∑

(xi,zi)∈D
〈g(xi)w(xi)〉, (9)

where 〈·, ·〉 is the Euclidean dot product. This shows (4) is a summation of dot products be-
tween the network output g(xi) and boosting weights w(xi). Therefore (4) measures the sim-
ilarity between those vectors and thus the optimal network output, g∗(xi), has to be aligned
with the boosting weights, i.e.

g∗(xi) = βw(xi), (10)

where β > 0. Note that the exact value of β is not crucial during the training of the network
because g∗(x) will be scaled appropriately by the optimal α in (7) afterwards. Therefore
without loss of generality we can assume that β = 1 and the optimal network output has to
replicate boosting weights. This is equivalent to train a network g(x) = [g1(x) . . .gM(x)] ∈
RM to minimize the square error loss

Lse(w,g) = ∑
xi∈D

M

∑
j=1

(g j(xi)−w j(xi))
2. (11)

Using Lse loss function for learning a CNN, the back-propagated derivatives are

− ∂Lse

∂gk(xi)
= 2(w j(xi)−gk(xi)). (12)

The proposed algorithm (BoostCNN) is summarized in Algorithm 1. It starts by initial-
izing f (x) = 0 ∈ RM . In each iteration, it first computes the boosting weights, w(x) ∈ RM

according to (5) and trains a network g∗(x) to minimize the square error between the net-
work output and boosting weights using (11). Once the network is trained, BoostCNN finds
the boosting coefficient by minimizing the boosting loss, (7), and adds the network to the
ensemble according to f (x) = f (x)+να∗g∗(x) where ν ∈ (0,1] is the shrinkage parameter
which has been shown to act as a regularizer for boosting algorithms [11].

3.1 Implementation Details:
We implemented the proposed algorithm using Caffe library [18]. For training networks to
minimize the square loss, (11), we replaced the soft-max loss layer of the popular networks
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Algorithm 1 BoostCNN
Input: number of classes M, number of boosting, iterations Nb, shrinkage parameter ν ,
and dataset D = {(x1,z1), ...,(xn,zn)} where zi ∈ {1 . . .M} is label of example xi.
Init: set f (x) = 0 ∈ RM .
for t = 1 to Nb do

compute w(xi) for all xi, using (5).
train a network g∗(x) to optimize (11).
find the optimal coefficient, α∗, using (7).
update f (x) = f (x)+να∗g∗(x).

end for
Output: predictor f (x)

such as Alex-Net [24] with the Euclidean loss layer. In each iteration of boosting we need to
compute the weights, according to (5), however, computing f (x) for each example requires
running all of the networks in the current ensemble and can be very expensive. To avoid this
problem, we note that if wt(xi) are the weights at iteration t then using (5) and (8)

wt+1
k (xi) =

{
−e−

1
2 να∗[g∗zi

(xi)−g∗k(xi)]wt
k(xi) k 6= zi

−∑M
j=1| j 6=k wt+1

j (xi) k = zi
(13)

where g∗(x) and α∗ are the network and the coefficient learned at iteration t. Similarly
finding an accurate α∗ by a line search in (7) can be computationally expensive and instead
we used binary search to solve ∂R[ f+αg∗]

∂α = 0. Finally, note that for training a deep network
in each boosting iteration it is possible to initialize it by random parameters or by parameters
of the network learned in the previous iteration. According to our experiment the later is
more effective and we will further discuss this issue in section 5.

4 Analysis
The proposed BoostCNN algorithm has a couple of interesting properties. First note that
there are two objective functions in the algorithm 1) the boosting loss function that is used to
compute the boosting weights, (5), and coefficients (7), and 2) the square loss function (11)
which is used to train deep networks. We can optionally change these objective functions,
e.g. use logistic loss as boosting objective or use weighted error rate as network training
objective as long as minimizing the network objective function is consistent with minimizing
directional gradient of the boosting objective function (4).

Next we provide some intuition about the boosting weights and their effects on train-
ing CNN learners. According to (5), the boosting weights in BoostCNN algorithm are M-
dimensional. These weights encode two types of information. First, the norm of vector
w(x) ∈ RM is proportional to how well example x is classified by the current ensemble of
weak learners. If x is correctly classified then fzi(xi) will be larger than fk(xi) ∀k 6= zi, the
terms in the exponents of (5) will be small and thus w(x) will have a small norm. On the
other hand, if x is mis-classified, some of the exponent terms in (5) will be positive and
w(x) will have larger norm. Second, the kth components of vector w(xi) ∈ RM , encodes the
importance of kth class in classification of example xi. For an incorrect class label k 6= zi,
if fk(xi) > fz(xi) then wk(x) will be large. In addition wk(x) will increase exponentially by
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increasing fk(xi) > fz(xi). Therefore weights of incorrect classes will get magnified expo-
nentially. Similarly, if fk(xi) < fz(xi), wk(xi) will be a small value. These two weighting
mechanisms will modulate the network output g(x) in (4) and help CNN learning procedure
to focus on more difficult examples and more confusing classes.

Another interesting property of BoostCNN method is that, for any network ḡ(x) for
which (4) is non-zero, adding ḡ(x) (or −ḡ(x)) can help the gradient descent procedure to
further minimize the classification risk of the boosted classifier, (2) and improve the perfor-
mance. In fact if g′(x) is a network with uniform random output, i.e.

Prob(k = arg max
k=1...M

g′(x)) =
1
M
, (14)

then according to (4) and (5)

E{δR[ f ;g′]}=− 1
2|D| ∑

xi∈D

M

∑
j=1

E{g j(xi)}w j(xi) =−
1

2M|D| ∑
xi∈D

M

∑
j=1

w j(xi) = 0.

Therefore, BoostCNN can utilize any network whose output is slightly better than random
for boosting.

Finally, BoostCNN is not limited to a single type of base-leaner and its pool of weak
learners can include networks with different structures. In this case, at each boosting iter-
ations, we train these networks independently to approximate boosting weights using (11),
and the network that leads to most reduction in the boosted classification risk (2) will be
added to the ensemble. This is very significant as it can reduce the trial-and-error that is
required for finding the right CNN structure for a specific task. We will discuss more about
this in section 5.1.

4.1 Previous works

The proposed framework is similar to boosting methods proposed by Schwenk et al. [34, 35,
36] such as Diabolo classifier, multi-column deep network of [1, 5] and averaging several
learning networks e.g. [24, 37].

Comparing with Diabolo classifier, the proposed BoostCNN has different boosting ob-
jective as well as different network learning objective, e.g. in Diabolo the network is trained
to minimize the weighted error rate while in BoostCNN the network is trained to replicate
the boosting weights. Comparing with multi-column CNN, first note that multi-column CNN
trains a group of CNNs simultaneously to learn a linear combination of these network as the
final predictor. This, however, will increase the complexity of the learning process as it will
exponentially increase number of local minimas in the optimization problem, e.g. any per-
mutation of columns of a local optima is also a local optima. Comparing this method with the
propose method, in BoostCNN 1) networks are trained sequentially and 2) each network is
trained on the mistakes of the previous networks. This sequential network learning simplifies
the optimization problem and avoids the local minima problem of multi-columns networks.
Finally, BoostCNN is better than averaging several independently trained networks because
BoostCNN optimizes coefficients of the linear combination and trains new networks on more
difficult examples and classes.
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Figure 1: Comparison of error rate of BoostCNN with single CNN and Bagging.

5 Experiments

In this section we illustrate properties of the proposed BoostCNN algorithm and compare its
performance with other methods on several image classification tasks. For implementation,
we used the open source Caffe library [18]1.

We start by illustrating properties of BoostCNN using CIFAR-10 dataset [23]. This
dataset consists of 60K 32×32 images in 10 classes, where 50K images are for training and
the rest are for testing. For training, we used CIFAR10-quick network model provided in
Caffe as the base-learner and replaced its its soft-max loss layer with a Euclidean loss layer.
This network consists of three convolutional layers, each followed by a pooling layer and a
rectified linear unit (RELU). These layers are then augmented by two fully connected layers.
Using BoostCNN, we trained an ensemble of 9 networks each with 2,000 back-propagation
iterations. For comparison, we trained 9 networks independently and averaged their results
(bagging). We also trained a single network, using soft-max loss layer, with more than
20,000 back-propagation iterations. Figure 1 shows the error rates of these networks as a
function of number of iterations. As shown in this figure, BoostCNN classifier was able
to outperform both the bagged classifier and the single CNN classifier. We continued the
training of the single CNN for 40K iterations, but error rate did not improve significantly.
Manually changing the learning rate of the single CNN will decrease the error to around
25% which is still 3% higher than the error rate of BoostCNN. Figure 1 also shows the
performance of BoostCNN where the base-learner is initialized randomly at the start of each
boosting iteration, (BoostCNN with reset). As shown in this figure, the random initialization
leads to inferior performance and it is better to initialize the base-learner in each boosting
iteration with the last learned base-learner.

Next we evaluate performance of the BoostCNN and compare it with state-of-the-art in
tasks of bird species classification, fine grained car classification and fine grained aircraft
classification tasks. In these experiments, we used the Bi-linear network of [41] (B-Net) as
base-learner, we initialize the network with VGG16 weights and initialized the last layer (i.e.
the linear layer connecting the bilinear features to the output classes) using an externally
trained linear SVM to reduce the total training time. The Linear SVM classifier is very
similar to learning soft-max loss used in the network. However, we found that learning the
last layer outside of the network to initialize the training leads to more stable classifiers and
better results. Note that this is only possible when dealing with relatively small datasets,
otherwise computing all of the features requires a significant amount of memory.

1The code is available at http://github.com/mmoghimi/BoostCNN
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Method Accuracy
BoostCNN 85.6%

BoostCNN(heterogeneous) 86.2%
Bilinear CNN (B-Net) [41] 84.1%

Krause et al. [22] 82.0%
Pose Normalized CNN [2] 75.7%

Part-based RCNN[45] 73.9%
Table 1: Performance comparison for bird classification on CUB200 dataset

Method Accuracy
BoostCNN 92.1%

Bilinear CNN (B-Net) [41] 91.3%
Krause et al. [22] 92.6%

Chai et al. [4] 78.0%
Fisher Vector [13] 82.7%

Method Accuracy
BoostCNN 88.5%

Bilinear CNN (B-Net) [41] 84.1%
Fisher Vector [13] 80.7%

Chai et al. [4] 72.5%

Table 2: Performance comparison on Cars (left) and Aircraft (right) classification.

Bird Species Classification: For this task we used CUB-200-2011 dataset. [43]. This data
consists of 11,788 images of 200 bird species and comes with a pre-selected training and
testing splits. We cropped the largest square window from the center of all images, resized
them to 448× 448, and mirrored the training images to double the training set. Table 1
compares performance of BoostCNN with other state-of-the-art results. As shown in this
table, BoostCNN was able to outperform the other methods.
Car make and model classification: For this task we used the car dataset of [21] which
consists of 16,185 images of 196 different car make and models from Acura RL to Volvo
XC90. This dataset comes with a pre-defined training and testing splits. The images include
a variety of sizes and aspect ratios and we cropped the largest square window and resized
it to 448× 448 for pre-processing. Table 2-left compares performance of BoostCNN with
other methods. In particular, BoostCNN was able to outperform its base-learner classifier
B-Net and its error rate was only 0.5% higher than the state-of-the-art [21].
Aircraft Classification: For this task we used the FGVC-aircraft dataset [25] which consists
of 10k images of 100 different aircraft models. It also contains different sub-models of the
same aircraft design, e.g. different Boeing 737s. We resized the images to 448×448 while
ignoring the original aspect ratio for this experiment and similar to other datasets we doubled
the training set by mirroring. Table 2-right compares performance of different methods.
As shown in this table BoostCNN was able to outperform other state-of-the-art-methods
significantly, the next best method is the Bilinear CNN (B-Net) which is used as the base-
learner in this BoostCNN classifier.

5.1 Boosting heterogeneous classifiers

In the previous section we showed that BoostCNN is able to achieve state-of-the-art perfor-
mance on several image classification tasks. However, each of those tasks required trial-and-
error for finding the best network structure, e.g. input size. BoostCNN can eliminate the
need for this trial-and-error since it is not limited to a single type of base-leaner and its pool
of weak learners can include networks with different structures. In this case, at each boosting
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

boosting iteration

resized, 560x448

resized, 280x224

resized, 448x448

resized, 224x224

center,  560x448

center,  280x224

center,  448x448

center,  224x224

83.384.184.785.085.185.485.485.685.985.985.886.086.086.086.186.186.186.286.286.286.286.286.286.286.2

77.880.781.983.183.884.384.384.384.484.584.985.285.385.585.785.785.885.986.086.186.186.186.286.186.1

83.184.184.685.085.185.285.285.585.585.685.885.986.086.086.086.086.086.186.186.286.286.186.186.286.2

76.583.383.784.284.585.085.185.285.185.385.585.685.785.885.885.885.885.885.885.885.986.086.086.086.1

83.284.285.185.585.785.986.086.386.285.986.386.386.386.386.386.286.186.286.186.186.286.186.186.186.1

79.281.382.883.884.484.784.784.784.784.785.085.185.585.585.785.785.785.785.885.885.986.086.086.086.1

84.184.785.185.585.585.685.886.186.186.186.186.186.086.086.086.186.186.186.186.186.186.186.186.186.1

79.081.482.883.484.084.684.584.584.684.684.985.285.385.485.685.685.785.785.785.785.785.785.785.785.7

Heterogenous Boosting Experiment on CUB200

Figure 2: Testing accuracy on CUB for 25 boosting iterations using 8 different network structures as base-
learners.

iterations, we train these networks independently to approximate the boosting weights (11),
and the network that leads to most reduction in the boosted classification risk (2) will be
added to the ensemble.

We used this strategy in this experiment where the pool of base-learners consists of B-
Nets with 8 different input image variations, i.e. two different input sizes (448 and 224), two
aspect ratios (1 and 1.25) and the choice of cropping the center patch or resizing the image
to the desired size. Note that B-Nets work with any input size since the output of the bilinear
layer only depends on the number of channels. Figure. 2 shows details about performance of
this classifier and the candidate weak-learner in each boosting iteration. In this figure, each
row corresponds to performance of one network candidate and each column corresponds
to one boosting iterations. The entry at ith row and jth column shows testing accuracy at
iteration i if jth network was selected in that iteration. As shown in this figure, the network
with (center, 448× 448) input structure, recipe proposed by [41], was the best base-learner
in the early iterations but in the later iterations, the network with (center, 560×448) is more
effective. Finally, Table 1 compare performance of this approach with other methods. As
shown in this figure, this approach is more effective than using a single type of network as
weak-learner.

6 Conclusion and future work

In this paper, we proposed a novel model by combining the merits of boosting and deep
CNNs. We are inspired by the powerful image representation learned by deep CNNs and the
ability of boosting to combine the strengths of multiple learners to improve the classification.
To learn this new model, we developed an algorithm to incorporate boosting weights into the
deep learning architecture. We illustrated the properties of boosted convolutional networks
and demonstrated the advantages of our model via state-of-the-art results on several fine-
grained classification datasets: CUB [43], Cars [21] and Aircrafts [25]. Finally we showed
that BoostCNN is able to boost networks with different structures. This not only resulted
in better performance but also eliminated the required manual effort for finding the right
network structure. In future, we plan to apply BoostCNN to general large scale classification
datasets, e.g. ImageNet, and extend our heterogeneous boosting experiments to include more
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diverse set of networks with different depths and configurations.
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