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Abstract

In this paper, we propose a novel method to predict the correctness of stereo corre-
spondences, which we call confidence, and a confidence fusion method for dense dis-
parity estimation. The input of our method consists in a two channels local window
(disparity patch) which is designed by taking into account ideas of conventional confi-
dence features. 1st channel is coming from the idea that neighboring pixels which have
consistent disparities are more likely to be correct matching. In 2nd channel, a disparity
from another image is considered such that the matches from left to right image should
be consistent with those from right to left. The disparity patches are used as inputs of
Convolutional Neural Networks so that the features and classifiers are simultaneously
trained unlike what is done by existing methods. Moreover, the confidence is incorpo-
rated into Semi-Global Matching(SGM) by adjusting its parameters directly. We show
the prominent performance of both confidence prediction and dense disparity estimation
on KITTI datasets which are real world scenery.

1 Introduction
Stereo disparity estimation is one of the most important problems in computer vision. Many
correspondence methods and optimization methods have been proposed for many years [29].
The disparity map is widely used, for example in object detection [12], surveillance [27], and
autonomous driving for cars and unmanned air vehicles [23].

Accurate stereo correspondences lead to better quality of the disparity maps. Recently,
many accurate correspondence methods have been proposed[2, 18, 32, 34]. However, even
the best matching methods come up with incorrect correspondences due to various reasons
such as occlusion, saturation, pixel intensity noise, specularity, and calibration error. It is
therefore necessary to estimate the confidence of correspondences in order to remove low
reliable matches. Moreover these confidences can be used to interpolate correspondences
over images [3, 8, 24, 25]. “Left right consistency check” is one of the most popular strate-
gies [6]. It assumes the matches from left to right image should be consistent with those
from right to left. Figure 1 shows an original disparity map and disparity maps which are
purged from their low confidence matches for different confidence measures. Many incorrect
correspondences appear around sky, leaves, and pavement especially close to image borders.
“Left right consistency check” (Fig. 1(c)) removes some incorrect correspondences. To
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(c) Left right consistency (inconsistent  disparity>1)
(b) Original disparity map

(a) Left image

(e) Our method

(d) Park and Yoon  [24]

Figure 1: Qualitative results on KITTI 2012 stereo pair. Black pixels in the disparity map
are considered as wrong correspondence by each prediction method.

detect other wrong matches, many hand crafted features have been proposed [4, 14, 26].
Learning based confidence measures [11, 21, 24, 28] combine these features and are able
to outperform their individual usage as shown in Fig. 1(d). These features are carefully de-
signed, however beneficial information might be undescribed or their representation might
be too redundant. As a consequence, the conventional learning based confidence measures
might have limited accuracy.

To overcome the problem, we leverage Convolutional Neural Networks (CNNs). CNNs
provide high performance from primitive level processing such as patch based matching[2,
18, 32, 34] to high level ones such as scene classification[1, 16] and object detection[9, 35].
Deep learning using a CNN offers a promising way to improve upon hand crafted features.
To the best of our knowledge, we are the first to leverage CNN for stereo confidence measure
and show its prominent accuracy.

Contributions of this paper are as follows. First, we design a two channels disparity patch
which takes into account the ideas of conventional confidence features. The patch is used as
an input for CNN so that the discriminative features and classifier are simultaneously trained.
As a consequence, our method is able to filter incorrect correspondences more correctly as
shown in Fig. 1(e). In order to handle trade-off between accuracy and computation time, we
propose three types of network structures and their input patches. Second, in order to acquire
dense disparity, we incorporate the confidence into Semi Global Matching (SGM) [13] with
simpler operations than the existing method. Finally, our confidence measure outperforms
state of the art method [24]. In addition, our confidence fusion was able to get the best
accuracy on KITTI 2012 stereo benchmark [7] and the second best on KITTI 2015 [20]
without the need for a strong foreground shape prior.

This paper is organized as follows: Section 2 describes our confidence prediction and
dense disparity estimation combined with SGM and the confidence. Section 3 shows exper-
imental results both the confidence and dense disparity map accuracy on challenging scene.
Section 4 summarizes this paper.
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2 Proposed method
What information can be considered discriminative to predict unreliable correspondences?
In this section, we first describe valuable information which distinguishes reliability of stereo
correspondence and then show how to design the classifier and its input.

2.1 Discriminative information
Many features have been proposed to predict the confidence of stereo correspondences. Hu
and Mordohai[14] categorized them into five groups. The first group of features focuses on
the matching cost: large matching costs are unlikely to present correct correspondences. In
the second group, features capture local properties of the cost curve. The curvature around
the minimum matching cost is used as a confidence measure, i.e. smaller values which
correspond to flat curves such as texture-less area indicate higher ambiguity. The third group
corresponds to features based on local minima of the cost curve, such as “Peak Ratio(PKR)”.
PKR is computed as the minimum matching cost divided by the second local minimum. The
fourth group uses the entire cost curve in order to compute a probability mass function over
disparity. Finally, the fifth group contains features which capture the consistency between
the left and right disparity maps. The idea is that the matches from left to right image and
those from right to left image should indicate consistent disparity when the matches are
correct. Those features have been explored for a long time. However beneficial information
might be undescribed or their representation might be too redundant. We consider a unified
framework for feature extraction and classification. Deep learning is a promising way to
realize it.

Our input candidates are a stereo image pair, a cost volume over disparity, and a disparity
map provided by winner takes all method. In early experiments, we explored discriminative
inputs from them by using a basic Convolutional Neural Network (CNN). The CNN structure
consisted of two or three Convolutional layers, Non linear layers, Fully connected layers, and
Softmax layer. The matching cost over disparity didn’t perform well. A local window which
was allocated in a stereo image (Image patch) could have a little prediction ability, however
the accuracy was far from state of the art method[24]. A local window which was allocated
in a disparity map (Disparity patch) with early experimental CNN structure could achieve
roughly equivalent accuracy to the conventional learning based methods[11, 24].

2.2 Confidence estimation with a CNN
Considering early experiments, we leverage the disparity patch and introduce the knowledge
of the conventional features. We first take into account an idea from “Difference with Median
Disparity(MED)”[28]. MED’s idea is that neighboring pixels which have consistent value
are more likely to be correct matching. Instead of subtracting median or mean value of the
patch[5, 15], we simply subtract the disparity value at the central pixel xc of the patch. Eq.(1)
represents the disparity patch p1 converted from the disparity map D1.

p1 = [D1(x)−D1(xc)]x∈W (1)

x indicates pixel position inside the local window W .
Conventional methods suggest to use a disparity from another image. Hence we employ

the idea of the fifth group in previous section. We get the disparity map D2 by converting
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(a) Disparity map D1 (left image) (b) Disparity map D2 (from right image)

(c) Left image (d) Estimated confidence map

Disparity patchp1 region p2 regionxc

Figure 2: (a) Disparity map derived from the left image D1 and (b) disparity map D2 con-
verted from right to left image. The color of D1 and D2 encodes disparity. (c) Left image.
(d) Confidence map represents reliable pixels in white.

Disposable patch
Reusablepatch concatenateConv. layer FC

Disparity patch 1st conv. layer 2nd conv. 
3rd conv. 4th conv. 

ReLU ReLU
15x15 2ch 13x13 6ch 11x11 4ch

9x9 4ch 7x7 4ch 2FC 2Softmax
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3x3
Correct matchWrong matchFrom 2nd conv. ReLU ReLU

(a) Confidence prediction network (b) Hybrid confidence prediction network 

FC Softmax
Confidence prediction network
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15x15 2ch

Figure 3: (a) Confidence prediction network consists of 4 layers of convolution and ReLU,
Fully connected layer, and Softmax layer. (b) Hybrid network consists of normal network
with “reusable patch” and small sub network with “disposable patch”.

the disparity map in the right image to the left image coordinate[28]. Figure 2 shows the
disparity map D1 and D2. It appears that corresponding points have the same disparity, and
that texture-less or saturated regions at walls and sky have different disparities. The second
disparity patch p2 is designed as follows

p2 = [D2(x)−D1(xc)]x∈W . (2)

We use the two channels disparity patch p = (p1,p2) as an input of CNN. The CNN
is trained in a classifier manner. It means that a label is annotated to every input patch,
indicating whether the correspondence at the center position of the patch is correct or not. As
shown in Fig. 3(a), a disparity patch p of size 15×15 is input to the first layer which consists
of 6 different 3×3 kernels and ReLU. Then, at the second, third, and fourth layers, 4 different
3× 3 kernels and ReLU are applied respectively. A fully connected layer which has two
outputs is connected next to the fourth layer. Finally, Softmax layer outputs a correspondence
confidence at the center pixel of the patch.
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We employ a basic and small CNN for the sake of reducing potential computation cost of
the network. Note that Eq. (1) and (2) are computed for each patch due to subtraction of its
central value D1(xc). It will be shown in Sec. 3.1 that the patch improves prediction accuracy
drastically. Meanwhile, it makes slow computation because the output of the network for
each pixel has to be computed from scratch, so we call the patch “disposable patch”. If
the patch is independent of the value at the central position of the patch, the confidence can
be computed for all pixels in a single forward pass of the network by propagating entire
image. It leads faster computation because many intermediate results can be reused [33].
We propose “reusable patch” p′ = (p1

′,p2
′) as follows

p1
′ = [D1(x)]x∈W , p2

′ = [D2(x)−D1(x)]x∈W . (3)

In order to compensate for the computation time and accuracy, we also propose a hybrid
network, which combines the “reusable patch” with a miniaturized “disposable patch” as
shown in Fig. 3(b). The miniaturized 3×3 patch is applied to 3 different 3×3 kernels and
ReLU, and then follows 6 outputs of fully connected layer. The outputs from the “reusable
patch” and the “disposable patch” are concatenated and then applied to a fully connected
layer which has two outputs. Softmax layer predicts the class of the patch. The hybrid
network predicts better than the normal network with the “reusable patch”. See results in
Sec.3.1.

2.3 Confidence fusion for dense disparity map
So far, we have described pixel-wise confidence prediction. In this section, we incorporate
the predicted confidence into Semi-Global Matching(SGM) [13]. SGM is widely used for
dense disparity estimation due to its high accuracy while keeping low computation cost. An
energy function E is defined as

E(D) = ∑
x

(
C(x,Dx)+ ∑

y∈Nx

P1T [|Dx−Dy|= 1]+ ∑
y∈Nx

P2T [|Dx−Dy|> 1]

)
. (4)

C(x,Dx) represents a matching cost at pixel x of disparity Dx, so the first term is the sum of
all pixel matching costs for the disparities of D. The second term represents slanted surface
penalty P1 for all pixels y in the neighborhood Nx of x. T [·] represents Kronecker delta
function. The third term indicates penalty P2 for discontinuity disparity. P2 should be set
small according to the magnitude of the image gradient, for example P2 = P′2/|I(x)− I(y)|
so that the discontinuities are easily selected[13].

Park and Yoon[24] proposed to modulate the matching cost volume with the confidence
for SGM. They assume the low confidence pixels have unreliable matching costs over the
disparity, therefore they enforce to lessen the fluctuation of the matching cost over the dis-
parity. As a consequence, the discontinuities are unlikely to be selected at the low confidence
pixels.

Recently, Zbontar and LeCun[34] have shown adequate improvement with Cross-based
cost aggregation(CBCA) [36]. CBCA is an aggregation method of the matching cost vol-
ume, which consists in merging the costs of pixels that are located closely and have similar
intensity values. A combination of the modulation[24] and CBCA requires considerable
computation cost. We propose a simpler fusion method.

We assume the discontinuities are likely to have the large magnitude of the image gradi-
ent using the same assumption as the original SGM, but not all large gradient pixels corre-
spond to them. We consider the pixels with high confidence should be trusted and are able
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Left image Confidence map
SGM with confidenceSGM without confidence

Intensity noise +Reflection

Figure 4: SGM with and without confidence estimated by our method. The parameters are
the same as in Sec. 3.2.

to be the discontinuities easily. Hence, penalties at the high confidence pixel are designed to
be decreased. We modify P1 and P2 as follows

P1,2(x) = f1,2(I(x))+P′1,2λ max(−ξ (x)+m,0). (5)

ξ (x) represents the confidence value at pixel x, and is normalized from 0 to 1 so that larger
value means higher probability of correct correspondence. m and λ are the parameters of a
margin with possible range between 0 to 1 and blend ratio respectively. The function f1,2(I)
is defined according to [33]. P′1,2 is each maximum value of the penalty, i.e. sgm_P1 and
sgm_P2 [33]. Eq. (5) adds an extra penalty to the pixels with confidence lower than m by a
proportion of negative confidence (−ξ (x)+m) and λ . Penalties are directly changed so that
the matching cost volume need not to be modulated.

Figure 4 shows dense disparity maps given by SGM with and without confidence. These
images aren’t post processed. Bad estimates on pavement caused by image noise and reflec-
tion of texture on a dashboard are successfully removed. Quantitative results are enclosed in
Sec.3.2.

3 Experimental Result
We describe two experiments. In the first one, we compare the accuracy of our patch based
confidence prediction to other conventional methods (Sec.3.1). In the next we evaluate dense
disparity accuracy on public benchmarks (Sec.3.2).

3.1 Confidence accuracy
Following recent publications for evaluation of the confidence measure, we use KITTI 2012
dataset[7]. The dataset was captured by vehicle mounted stereo cameras and LIDAR was
used for acquiring ground truth of disparity maps. Ground truth is not provided for test
images, so the stereo pairs from training dataset are used for both training and evaluation.
As conventional methods[11, 24, 28] used eight stereo pairs 43, 71, 82, 87, 94, 120, 122, and
180th for training and the other 186 stereo pairs for evaluation, we followed the setting. The
eight pairs have relatively much incorrect correspondences than the rest pairs. We extracted
0.66 million of positive and negative samples from the pairs. In the later of this section,
we will show the effects of the size of the training set. The architecture is trained with
Caffe[15]. We employed stochastic gradient descent to minimize the cost of the network
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Figure 5: Comparison of sparsification plots on frame 21, 121, and 123 of KITTI train-
ing stereo pairs. Naive peak ratio (PKRN)[14], variances of the disparity values in a local
5×5 window (DVAR)[24], and left right consistency (LRC)[14] are drawn as conventional
features [14]. Park&Yoon[24] by 22 dimensional features and 10 or 50 trees of forests are
plotted as state of the art method.

KITTI sequence frame (ascending order of optimal AUC values)
AUC value 00.020.040.060.080.10.120.140.160.180.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186
OptimalPark and Yoon 50 treesOurs

Figure 6: AUC value according to the ascending order of optimal AUC values. We plotted
our method and Park&Yoon with 22 dimensions of 50 trees as state of the art method.

with a softmax loss function. Learning rate, momentum, and batch-size are set to 0.001, 0.9,
and 64 respectively. After ten million iterations, the trained parameters were used.

For quantitative comparison, we employ the sparsification curve and its area under curve
(AUC) value[11, 24, 28]. Better confidence prediction methods have AUC values that are
closer to the optimal curve: It means the method removes incorrect correspondence pixels
while keeping the correct ones. Fig. 5 shows the sparsification curve which represents the
evaluation of incorrect disparity estimation rate. As state of the art method, we chose [24]
with 22 dimensional features since this setting outperformed other learning based methods
[11, 28]. All methods are trained on the same training set. Our method provides superior
accuracy to any other methods. Fig. 6 represents AUC values which are sorted with respect
to ascending order of optimal AUC values over evaluation frames. Smaller AUC value of
optimal indicates better quality of the disparity map. As one can see, our method has superior
accuracy on almost all evaluation frames in spite of the difference of optimal AUC values.

Table 1 shows overall AUC value of 186 evaluation frames. We evaluated two kinds of
similarity measure, census transform (“Census”) [31] and CNN based matcher (“MC-CNN”)
which gives much more correct correspondences [34]. In our methods, “fast” and “hybrid”
indicate disparity patch given by Eq.(3) and combination of both types of disparity patches,
respectively. In both similarity measures, ours outperforms state of the art method.

Figure 7 shows AUC values and computation time with respect to patch size. 9×9 patch
gives the fastest while the worst AUC value. Considering the accuracy and computation
time, 15× 15 seems reasonable. We evaluated the effects of the size of the training set as
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Method AUC [Census] AUC [MC-CNN] Runtime[sec.]
Optimal 0.03953 0.02144 –

0.04198(6.2%) 0.02287(6.7%) 28.5(0.5*)
Ours fast 0.04497(13.8%) 0.02545(18.7%) 0.3

hybrid 0.04483(13.4%) 0.02525(17.8%) 0.5
Park&Yoon 50 trees 0.04702(18.9%) 0.02635(22.9%) 2.2
[24](22 dim.) 10 trees 0.05152(30.3%) 0.02739(27.8%) 0.4

Table 1: Comparison of overall AUC value over 186 frames of KITTI training data with
different similarity measures. A bracket at AUC means difference between optimal and
estimated result. Runtime of our method is measured on single thread with 1st generation
of Intel(R) Core(TM) i7 2.8GHz with 12GB memory. “*” indicates computation time on
NVIDIA(R) Titan X.
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Figure 7: AUC values and computa-
tion time with respect to patch size.
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Figure 8: The number of training images and
difference from optimal AUC value.

shown in Fig. 8. The normal networks were trained by using randomly selected images from
0 to 99th frame of KITTI 2012 on each of the training set size. After ten million iterations,
AUC values were computed over images from 100 to 193th frame. We tested 4 times on
each of the size and drew the boxplots. The performances of the networks seem saturated
over 4 images.

3.2 Dense disparity accuracy

For dense disparity estimation, we employed MC-CNN[33, 34] and its post processing. We
modified one of the bilateral filter at the post processing step in order to preserve object
borders more strongly, and parameters are optimized. Table 2 shows estimated errors with
these modifications. We use the default error criterion: The percentage of erroneous pixels
on non-occluded areas with an error threshold of 3 pixels.

Figure 9 and Table 3 show the accuracy on KITTI 2012 testing dataset 1. We get the best
accuracy when MC-CNN-acrt[33, 34] is employed as a similarity measure. We found that
the combination of our approach with MC-CNN-fast which runs in less than 2 seconds also
provides a significant improvement with respect to its baseline.

Figure 10 and Table 4 show disparity map error on KITTI 2015 testing dataset [20]. Our
method lost top on this dataset because annotated density of foreground (vehicle) is much
higher than that of background. Additionally, the foregrounds which have transparent region

1You can see more results at http://www.cvlibs.net/datasets/kitti/eval_stereo.php
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MC-CNN-acrt original Ours without confidence Ours
2.61% (3.19%) 2.55% (3.14%) 2.50% (3.07%)

Table 2: Out-Noc error on KITTI 2012 training dataset. Pure SGM errors are inside bracket.
“Ours without confidence” corresponds to leverage only the optimized paramters and the
modified bilateral filter.

Ours with MC-CNN-acrt
MC-CNN-acrt
Input image

1.87
3.92

Ours with MC-CNN-acrt
MC-CNN-acrt

3.58
2.05

Input image

Error 3pixels Out-Noc
Figure 9: Example results of original MC-CNN-acrt and our fusion method with MC-CNN-
acrt in KITTI 2012.

such as windshield and reflected region are hard to be predicted to fit vehicle’s shape. It
makes an advantage for the method which uses object knowledge such as Displets [10].
However, our method could get the best rank on background region which was equivalent
to KITTI 2012 evaluation criterion. Compared to MC-CNN-acrt, our method provides more
accurate disparity not only on background but also on foreground.

4 Conclusion
In this paper, we proposed a method for predicting correspondence confidence. Moreover,
we proposed a fusion method of the confidence for dense disparity estimation. We exploited
a two channels disparity patch which was designed by taking into account ideas of conven-
tional confidence features. Neural networks which predict correspondence confidence were
trained with the patches. Then, the confidence was incorporated into SGM by adjusting pa-
rameters without modulating matching cost volume. Our method was able to reduce confi-
dence prediction error up to 1/3 against state of the art method. Moreover, accuracy of dense
disparity achieved the best and the second best rank on KITTI 2012 and 2015 benchmark
respectively.
Acknowledgment The author would like to thank Ian Cherabier working at Pollefeys Lab.
for helping to improve the paper.
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Rank Method Setting Error Runtime[sec.]
1 Ours with MC-CNN-acrt 2.36% 68*
2 Displets v2[10] 2.37% 265
3 VDS(anonymous) 2.42% 68*
4 MC-CNN-acrt[33, 34] 2.43% 67*
5 cfusion[22] MV 2.46% 70*
6 Ours with MC-CNN-fast 2.68% 1.8*
7 PRSM[30] F,MV 2.78% 300
8 MC-CNN-fast[33] 2.82% 0.8*

Table 3: Out-Noc error on KITTI 2012 testing dataset by May 1st 2016. Rank is based on
“Error”. F and MV at Setting represent the method uses two and more than two temporally
adjacent images, respectively. “*” at Runtime means GPU computation. The parameters of
our fusion with MC-CNN-acrt are (sgm_P1,sgm_P2,sgm_Q1,sgm_Q2,sgm_V,sgm_D)=
(1.2,24,2,4,1.5,0.06)[33] and (m,λ ) = (0.6,0.7) in Eq.5.

Rank Method D1-bg D1-fg D1-all Runtime[sec.]
1 Displets v2[10] 3.00% 5.56% 3.43% 265
2 Ours with MC-CNN-acrt 2.58% 8.74% 3.61% 68*
3 MC-CNN-acrt[33, 34] 2.89% 8.88% 3.89% 67*
4 CNN-SPS[17] 3.30% 7.92% 4.07% 80*
6 DispNetC[19] 4.32% 4.41% 4.34% 0.06*

Table 4: Out-Noc error on KITTI 2015 testing dataset by May 1st 2016. Rank
is based on D1-all error. The parameters of our fusion with MC-CNN-acrt
are (sgm_P1,sgm_P2,sgm_Q1,sgm_Q2,sgm_V,sgm_D)= (1.8,27,2,4,1.5,0.08) and
(m,λ ) = (0.6,2.0).

Ours with MC-CNN-acrt
MC-CNN-acrt

Ours with MC-CNN-acrt
MC-CNN-acrt

Error D1-bg D1-fg D1-all

Input image Input image
2.90 5.06 3.14
2.23 4.30 2.46

1.04 5.54 1.92
0.57 4.84 1.41

Figure 10: Example results of original MC-CNN-acrt and our fusion method with MC-CNN-
acrt in KITTI 2015.
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