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Abstract
In this paper, we introduce a new deformable model for image segmentation, by

reformulating a region based active contours energy into a geodesic contour energy in-
volving a Finsler metric. As a result, we solve the region based active contours energy
minimization problem without resorting to level set functions, but using a robust Eikonal
equation framework. By sampling a set of control points from the closed active con-
tour in clockwise order, the active contours evolution problem is turned into finding a
collection of minimal curves joining all the control points. Globally optimal minimal
curves are obtained by solving an Eikonal equation, involving a Finsler metric, which is
achieved at a modest numerical cost using a variant of the fast marching algorithm.

1 Introduction
The class of active contour methods, addressing image segmentation problems using ade-
quate curve evolution models, has attracted vast attention since the pioneer work of Kass et
al. [18]. They model object boundaries as closed curves minimizing an energy functional,
invoking either region information [9, 20, 24, 28, 29] or edge information [8, 14, 18, 30, 31].

The energy functionals of region based active contour models consider the similarity
measurement of gray levels, colors or textures inside each region component. Mumford and
Shah [24] presented a model using a piecewise smooth function to approximate the image
intensities. Later on, it was shown that the Mumford-Shah functional can be minimized by
curve evolution schemes [28, 29], in which the curves are represented by the zero values
of level set functions [25]. Chan and Vese [9] consider a reduced form of Mumford-Shah
functional based on the variation level set framework [32]. In [9], the authors approximated
the image intensities by two constants, which is relevant to the cartoon model as discussed
in [24]. The basic idea of the local region based models [19, 20] is to consider a scale
function in their energy functionals to deal with the intensities inhomogenenity problem.
Other interesting region based active contour models include the pairwise similarity energy
functional models [5, 16, 17, 27].

Edge based active contours models often regard the image gradient inverse magnitude
as a potential function, so as to attract the contours toward the expected boundaries. An
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important shortcoming of these models is that they are sensitive to the local minimas of the
respective energies. Sometimes the contours will be trapped to spurious edges produced by
noise. Eikonal PDE based minimal path model was introduced by Cohen and Kimmel [15]
to solve the initialization and minimization problems suffered by the classical snakes model
[18]. This minimal path model can efficiently find the global minimum of the geodesic en-
ergy [8] between two points thanks to Eikonal interpretation and the fast marching algorithm
[26]. Recent improvements to the minimal path model focus on the orientation [4, 6] and
curvature enhancement [13]. Applications of the minimal path models also have been deeply
studied in the last two decades [1, 2, 3, 11, 12].

Mille et al. [22] proposed a deformable model for interactive image segmentation,
which can blend the benefits of both region based active contours energy and minimal path
model [15]. This model generated a set of admissible paths by the concept of saddle point in
terms of image edge information. Then a region, edge, and contour simplicity based hybrid
energy was constructed. A combination of paths from the admissible paths set was chosen to
minimize the hybrid energy in a manner of greedy. However, the admissible minimal paths
in [22] were generated relying only on the edge information.

In this paper, we present a new Finsler geodesics evolution model for region based image
segmentation. We build the connection between the Eikonal equation based minimal path
model and the region based active contours models via a Finsler metric. The minimal paths
in our model can be determined by pure region information or by both region and edge
information. The initialization is also flexible: one can provide a contour or a set of points
distributed on the object bounadries.

2 Region-Based Active Contours Models and Finsler
Minimal Path Model

2.1 Mumford-Shah Functional based Active Contours Models
The classical Mumford-Shah (MS) functional [24] combines region based term and a curve
length regularization term

EMS(g,γ) = α
∫

Ω
(I(x)−g(x))2 dx+β

∫

Ω\γ
‖∇g(x)‖2dx+λ

∫ 1

0
‖γ̇(t)‖dt, (1)

where Ω ⊂ R2 is the image domain and I : Ω→ R is an observed gray level image. g is a
piecewise smooth image data function used to approximate I inside each region component
and γ : [0,1]→ Ω is a smooth curve. α , β and λ are positive constants. It is known that
minimizing the original MS functional EMS is a difficult task. Vese and Chan [29] and
Tasi et al. [28] independently proposed numerical approaches to the original MS problem
based on active contours evolution. Along the same research line, Brox and Cremers [7]
statistically interpreted the piecewise smooth MS functional by a local region based model.
Chan-Vese (CV) Piecewise Constant Active Contours Model: Chan and Vese [9] pre-
sented a region based active contours model where the energy functional is obtained from
the reduced form of the original MS functional by setting the piecewise smooth function g
to be constants c1 inside γ and to be c2 outside γ . In its basic formulation, the contour γ
was represented by the zero-value of the level set function Φ [25]. By a variational level set
approach [32] invoking a Heaviside function H : Ω→ {0, 1}, the variational level set based
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CV model functional [9] can be expressed as

ECV(Φ,c1,c2) = α1

∫

Ω
(I(x)− c1)

2 H(Φ(x))dx+α2

∫

Ω
(I(x)− c2)

2 H(−Φ(x))dx

+λ
∫

Ω
‖∇H(Φ(x))‖dx+ν

∫

Ω
H(Φ(x))dx, (2)

where the last term of above energy functional is an optional ballon force [14].
Local Binary Fitting (LBF) Model: The LBF model [20] was introduced by Li et al. to
deal with inhomogeneous intensities problem. This model introduced a local gaussian kernel
to the active contour energy in the variational level set form:

ELBF(Φ,u1,u2) =
∫

Ω
Jx(Φ,u1,u2)dx, (3)

where one has

Jx(Φ,u1,u2) =
∫

Ω
Gσ (y−x)

(
(I(y)−u1(x))2H(Φ(y))+(I(y)−u2(x))2H(−Φ(y))

)
dy.

2.2 Eikonal Equation based Minimal Path Model
Classical Minimal Path Model: The Eikonal equation based minimal path model was in-
troduced by Cohen and Kimmel [15] to globally minimize the geodesic energy between two
points:

`(γ) =
∫ 1

0
P(γ(t))‖γ̇(t)‖dt, (4)

where P is a potential function. Denote by U(x) = supγ∈A{`(γ); γ(0) = s,γ(1) = x} the
global minimum of ` among the set A of admissible paths joining a fixed source point s to
the target x. It is well known that U satisfies the Eikonal equation [15]:

‖∇U(x)‖= P(x), ∀x ∈Ω\{s}, and U(s) = 0. (5)

Once the minimal action map U is obtained by the fast marching algorithm [26], one can
track the minimal geodesic from the source point s to the target x by solving the ODE:

Ċs,x(t) ∝ ∇U(Cs,x(t)), with Cs,x(0) = s. (6)

Finsler Minimal Path Model: We consider a Finsler metric P : Ω×R2→R+ with the form
of

P(x,u) = P(x)‖u‖−〈ω(x), u〉, ∀x ∈Ω, ∀u ∈ R2, (7)

which obeys a smallness condition [13, 23]

‖ω(x)‖< P(x), ∀x ∈Ω, (8)

ensuring that P(x,u) will be always positive for all x ∈ Ω and any nonzero vector u ∈ R2.
The Eikonal equation associated to this Finsler metric P is [13, 23]

{
P∗

(
x,∇U(x)

)
= 1, ∀x ∈Ω\{s},

U(s) = 0,
(9)
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where P∗ is the dual metric of P defined by

P∗(x,u) = sup
v6=0

〈u,v〉
P(x,v) .

The geodesic Cs,x joining s to x, with respect to the metric P , can be tracked by solving

Ċs,x(t) ∝−∇P∗
(
Cs,x(t), ∇U

(
Cs,x(t)

))
, and Cs,x(0) = s. (10)

3 Finsler Geodesics Evolution Model

3.1 Region Based General Active Contour Energy
Let Ω⊂ R2 be the image domain and γ : [0,1]→Ω be a regular curve with outward normal
vector N . Given a function f : Ω→ R of interest, we consider the curve evolution scheme:

∂γ
∂τ

= f (γ)N , (11)

where τ denotes time. It is known that this curve evolution equation can be regarded as a
gradient descent, thus a minimization procedure, for the following functional [33]

F(γ) =
∫

K
f (x)dx, (12)

where K ⊂ Ω is the region inside the closed curve γ := ∂K. A complete active contour
energy, involving a curve length penalization, can be defined as

E(γ) = α F(γ)+
∫ 1

0
P(γ(t))‖γ̇(t)‖dt, (13)

where P is an edge based potential function, and α > 0 is a balancing parameter.

3.2 Reformulation as Finsler Geodesic Energy
The goal of this section is to express the region based active contour energy E in (13) as a
pure geodesic contour energy. Suppose V⊥ : Ω→R2 to be a continuously differentiable vec-
tor field defined over the domain Ω such that V⊥ satisfies the following divergence equation:

∇ · V⊥(x) = α f (x), ∀x ∈Ω, (14)

where f is the first order derivative function used in (12) and ∇ ·V⊥(x) denotes the divergence
value of a vector V⊥(x). Letting M be the counter-clockwise rotation matrix with rotation
angle θ = π/2, by divergence theorem, the regional energy (12) can be expressed as

αF(γ) := α
∫

K
f (x)dx =

∫

K
∇ · V⊥(x)dx (15)

=
∫ 1

0
〈V⊥(γ(t)),N (t)〉‖γ̇(t)‖dt (16)

=
∫ 1

0

〈
MTV⊥(γ(t)), MTN (t)‖γ̇(t)‖

〉
dt (17)

=
∫ 1

0

〈
V(γ(t)), γ̇(t)

〉
dt, (18)
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where V = MTV⊥. Unit vector N is the outward normal vector of contour γ and γ̇ is the
tangent vector of γ in clockwise order. Indeed, T = MTN is the tangent vector and

γ̇(t) = ‖γ̇(t)‖T (t) = ‖γ̇(t)‖MTN (t), ∀ t ∈ [0,1].

One can introduce a Finsler metric F : Ω×R2→ R:

F(x,u) = P(x)‖u‖+ 〈V(x),u〉, (19)

which is positive, thus well defined, provided one has the smallness condition (8):

‖V(x)‖< P(x), ∀x ∈Ω. (20)

In practice, it is difficult to satisfy the smallness condition (20). Assuming that P(x) ≥
1, ∀x ∈Ω, we make use of the following condition:

‖V(x)‖< min
y∈Ω
{P(y)}= 1, ∀x ∈Ω. (21)

In view of F and (15), the energy E (13) is converted to the Finsler geodesic energy:

L(γ) =
∫ 1

0
F(γ(t), γ̇(t))dt. (22)

3.3 Finsler Geodesics Evolution for Active Contours
In this section, we give the overview of the proposed Finsler geodesics evolution model by
an iterative minimization scheme. Note that non-linear region energies can be approximated,
at first order, by a linear region energy (12), which extends the scope of our method.

The basic idea is to seek a family of clockwise contours Cτ : [0,1]→ Ω, τ ∈ {0,1, · · ·},
which converge as τ→∞ to the expected object boundary. The initialization of the proposed
algorithm can be done by giving an initial contour C0 : [0,1]→Ω involving a set of successive
points

Λ0 = {C0(ti); ti ∈ [0,1], i = 1,2, · · · ,m}
in clockwise order. These points split C0 to m paths with same Euclidean curve length. Λ0
can be chosen automatically or can be specified by user.

The first step of the iteration look, see line 1 of Algorithm 1, is to construct updated
paths Cτ+1 by minimizing a geodesic energy L within a tubular neighborhood U of Cτ . Note
that both L and U depend on the previous paths Cτ . The tubular search region U should be
sufficiently thin so as to avoid shortcuts.

The second step is to update the term f appearing in the region energy (12). (This is only
required if (12) is used to approximate a more complex energy depending non-linearly on
the region K.) Then the metric F can be updated as introduced in Section 3.5 below, which
involves solving a linear system for computing the vector field V⊥. We repeat the mentioned
two steps until the path Cτ converges. The proposed algorithm can be found in Algorithm 1,
where the functions UpdateFinslerMetric and UpdateMinimalPaths are detailed in Sections
3.4 and 3.5.
Construction of Tubular Neighbourhood U : The tubular neighbourhood region U of a
curve C can be defined in terms of geodesic distance map E and a threshold value d:

U := {x ∈Ω; E(x)≤ d}, (23)
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Algorithm 1 Minimization Scheme
Input: given contour C0 and its sampled points collection Λ0.
Output: Final contour C.
Initialization:
• Set Λ← Λ0 and τ ← 0.
• Build the tubular neighbourhood region U according to C0.
• Update the metric F= UpdateFinslerMetric(C0, I, U)

while (dH > ε)
1: [C∗, Λ∗]=UpdateMinimalPaths(Cτ , F , Λ, U).
2: Update neighbourhood U of C∗.
3: Compute the Hausdorff distance dH of paths C∗ and Cτ .
4: τ ← τ +1.
5: Cτ ←C∗ and Λ← Λ∗.
6: F=UpdateFinslerMetric(Cτ , I, U).

where the geodesic distance map is computed by solving the following Eikonal Equation:
{
‖∇E(x)‖= Ψ(x), ∀x ∈Ω\{C},
E(y) = 0, ∀y ∈ C.

The potential function Ψ is computed by using the region K inside the curve C and function
f in (14). Specifically, for δ1 ≥ δ2 > 0, one has

Ψ(x) :=





δ1, if x ∈ K and f (x)> 0,
δ1, if x ∈ Kc and f (x)< 0,
δ2, otherwise.

(24)

3.4 Strategy for Finsler Minimal Paths Extraction

In this section, we present two methods for the function UpdateMinimalPaths based on dif-
ferent initialization ways. The first method is under the assumption that only an initial con-
tour is provided. Another is based on the user-specified fixed points set. The goal of the
function UpdateMinimalPaths is to minimize the geodesic energy L (22) with a fixed Finsler
metric F and a tubular neighbourhood U .
Contour Initialization Scheme: Letting C be the given clockwise curve and Λ be its sam-
pled points collection. our goal is to find a curve C∗ minimizing L(C). For this purpose, we
resample a collection of successive points from C, denoted by Λ∗:

Λ∗ := {pi; pi ∈ C, pi /∈ Λ, i = 1,2, · · · ,m}. (25)

We assume that points pi are distributed evenly on C in a clockwise order. These points
involved in Λ∗ split the closed curve C into a set of paths Ci = {Ci; i = 1,2, · · · ,m}. As a
consequence, the geodesic energy L(C) in (22) can be expressed as:

L(C) =
m

∑
i=1
L(Ci) =

m

∑
i=1

∫ 1

0
F(Ci(t), Ċi(t))dt. (26)
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For each curve Ci, the tubular neighbourhood region Ui ⊆U is constructed by (23), where U
is the neighbourhood region of C. We extract the geodesic C∗i between the pair of successive
points Ci(0) and Ci(1), where C∗i (0) = Ci(0) and C∗i (1) = Ci(1). This is done by solving
the Eikonal equation (9) with respect to the metric F inside Ui [10]. Then the curve C∗ is
concatenated by C∗i . Such a geodesic extraction scheme can be repeated by letting Λ := Λ∗
and C := C∗. Since C∗ consists of a set of geodesics, one has L(C) ≤ L(C∗). When the
number of repeating operation tends to ∞, L will converge to its minimum. This scheme can
be stopped when the Hausdorff distance between C and C∗ is small enough.
Fixed Points Initialization Scheme: If the points collection Λ0 is provided by user and
initially located in the object boundary exactly, we simply set Λ∗ := Λ0. The curve C∗ is
constructed in a same way as discussed above and no further iterations of the algorithm are
needed since Λ∗ is fixed, unless the tubular search region U was too small.

3.5 Computing the vector field V⊥ and Finsler Metric F
The minimization procedure of L (22) is solved inside a neighbourhood U instead of the
whole domain Ω. This means that we only require the vector field V⊥ defined over U .
In order to satisfy the smallness condition (20), it is natural to select a solution to (14)
minimizing an energy

min
{∫

U
‖V⊥(x)‖2 dx

}
, s.t. ∇ · V⊥(x) = α f (x), ∀x ∈U. (27)

Note that the solution to (27) can be expressed as V⊥ = ∇ϕ where ϕ is the solution of the
Poisson equation 4ϕ = f over U with Neumann boundary conditions. Despite the rich
regularity for solutions to elliptic PDEs, we could not find a result directly implying that the
solution to (27) obeys the desired smallness condition (20). However, such a result can easily
be established for a different solution to the divergence equation (14), given by convolution
with an explicit kernel

V⊥(x) =
α
2π

∫

U

x−y
‖x−y‖2 f (y)dy.

In that case one indeed obtains using Holder’s inequality

2π
α
‖V⊥(x)‖ ≤ ‖ f‖q

(∫

U

1
‖x−y‖p dy

) 1
p

≤ ‖ f‖q

(∫

DU

1
‖x− z‖p dz

) 1
p

= η Aµ
U ‖ f‖q, (28)

where DU is a disk centered around x and with the same area AU as U . p,q are two positive
constants obeying 1/p+ 1/q = 1 and q > 2. η is a constant and µ = 1

p − 1
2 > 0. ‖ f‖q is

the Lq norm of f on U . The smallness condition is thus satisfied as soon as the area of U is
sufficiently small.
Finsler Metric Construction: The vector field V⊥ solution to (27) depends on the neigh-
bourhood U . In order to obtain a vector field obeying ‖V⊥‖∞ < 1, one choose a tubular
neighbourhood U with small width hence a small area. On the other hand, U is regarded
as the search space for the next evolutional curve as discussed in Section 3.4. A small U
may therefore make the algorithm fall into undesirable local minimas of the geodesic en-
ergy L. Thus we use two tricks to solve this issue. The first trick is to make the parameter
α = 1/‖V⊥‖∞ + ε (see (27)) where ε is a small positive constant.
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Figure 1: Steps of the proposed algorithm using contour initialization scheme. Column 1
The initial contour and sampled control points are demonstrated. Columns 2-3 Intermediate
curve evolution results. Column 4 Final segmentation result.

In this paper, we make use of the second trick invoking a non-linear mapping increasing
function T : R+→ (0,1) defined as

T (x) = 1− exp(−x), ∀x > 0.

Thus the new vector field V̄ can be expressed by

V̄(x) = T (‖V⊥(x)‖)
M−1V⊥(x)
‖V⊥(x)‖

, ∀x ∈Ω. (29)

where the smallness condition (21) will be immediately satisfied and M is the counter-
clockwise rotation matrix with rotation angle θ = π/2. Based on the vector field V̄ , the
Finsler metric is denoted by F̄ and the geodesic energy L̄ is defined by (22) with F := F̄ .

The minimization of E (13) is transferred to the minimization of L̄. Note that since in
general we induce L̄ with a nonlinear mapping T , there is in fact slight difference in the
minimization problems and the results show that our geodesic method is very efficient and
robust. Two points guarantee that using the non-linear mapping T is reasonable:
• The minimization of E in (15) is relevant to both the directions of γ and the norm of
V , i.e., minimizing E is to find a path γ , for which the direction γ ′(t) for each t ∈ [0, 1]
should be as opposite to V

(
γ(t)

)
as possible and the norm ‖V

(
γ(t)

)
‖ should be as large as

possible, giving the relevance between the minimization problems of E and L̄. Introducing
the nonlinear mapping T will not modify both goals of the minimization problems.
• When the Finsler geodesics evolution scheme as discussed in Algorithm 1 tends to sta-
bilize, one can reduce the width of tubular neighbourhood U . Thus T (‖V‖) ≈ ‖V‖ as ‖V‖
is small. Moreover, We experimentally observe that near the centreline of U , the values of
‖V‖ will vanish or become very small, leading to a good approximation of V by V̄ .

4 Experiments
Our model can efficiently find the minimum of any given region-based active contours en-
ergy. In this section, we take the CV energy [9] and the LBF energy [20] to test our model
in the corresponding numerical experiments.

In Fig. 1, we show the course of the proposed contour evolution method using contour
initialization scheme as described in Section 3.4. The function f in (14) is obtained by using
the LBF energy, i.e. f is the Euler-Lagrange equation of the LBF energy functional. We set
P ≡ 1 in this experiment. In column 1 of Fig. 1, red dots indicate successive control points
sampled from the initial contour (blue curve). Each pair of successive control points leads
a geodesic, indicated by the color same to its corresponding initial source point as shown in
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Figure 2: Steps of the proposed algorithm using fixed points initialization scheme. Column
1 demonstrates the fixed control points and the initial contour linking these control points.
Columns 2-4 show the geodesic evolution results.

Figure 3: Comparative segmentation results on natural images. Column 1 demonstrate the
initializations. Column 2 shows the segmentation results from the LBF model. Column 3
shows the segmentation results from the proposed model with fixed points scheme.

Figure 4: Segmentation results using the proposed model with contour initialization scheme.

columns 2-4. Columns 2-3 demonstrate the intermediate segmentation results and column 4
presents the final stable contour.

In Fig. 2, we show the course of the proposed contour evolution method using fixed point
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initialization scheme. Column 1 demonstrates the fixed control points denoted by coloured
dots, where the initial closed contour is obtained by linking those successive control points.
Columns 2-3 are the intermediate segmentation results and column 4 is the final result. In
this experiments, our model requires only 3 steps to converge to the expected boundary. The
function f is obtained using the CV energy and potential P depends on gradient magnitude.

In Fig. 3 we show the comparative results from the LBF model with distance preserved
level set implementation [20, 21] and the proposed model with fixed points initializations
(red dots are the user provided points), demonstrated in columns 2 and 3 respectively. The
initializations are shown in column 1. Thanks to the robust minima searching scheme of the
proposed model, the results in column 3 can catch the desired boundaries. In contrast, the
results from the LBF model fall into the false local minimas. In this experiment, we use LBF
energy to derivate f (see (11)) for fair comparisons and set P≡ 1.

In Fig. 4, we show segmentation results from the proposed model using contour initial-
ization scheme. In this figure, green dash curves are the initial contours and blue curves are
the final segmentation results. The data function f (11) are obtained from the LBF energy
[20] and set P≡ 1.

5 Conclusion

In this paper, we show the possibilities of applying the Eikonal equation based minimal path
model to region based active contours for image segmentation. This is done by invoking
a Finsler metric and curve evolution scheme. The Finsler metric is obtained by applying
a non-linear mapping to a vector field, which is treated the solution of a linear constraint
minimization problem. We also design two curve evolution schemes to minimize the Finsler
metric based geodesic energy. Experiments show that our Finsler geodesics evolution model
indeed obtain promising results on real images.
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