Finsler Geodesics Evolution Model for Region based Active Contours
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In this paper, we introduce a new deformable model for image segmen-
tation, by reformulating a region based active contours energy into a
geodesic contour energy involving a Finsler metric.

Let Q C R? be the image domain and y: [0, 1] — Q be a regular curve
with outward normal vector . Given a function f : Q — R of interest,
we consider the curve evolution scheme:
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where 7 denotes time. This curve evolution equation can be regarded as a
gradient descent, thus a minimization procedure [2], for the functional

F) = [ r(odx

where K C Q is the region inside the closed curve y:= dK. A complete
active contour energy with a curve length regularization can be defined as
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where P is an edge based potential function, and & > 0 is a constant.
Reformulation as Finsler Geodesic Energy: Suppose V| : Q — R? to
be a continuously differentiable vector field defined over the domain Q
such that V| satisfies the following divergence equation:

where f is the first order derivative function used in (2) and V-V, (x) de-
notes the divergence value of a vector V| (x). Letting M be the counter-
clockwise rotation matrix with rotation angle 6 = 7/2, by divergence
theorem, the regional energy F in (2) can be expressed as
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where V =MT V| . Unit vector V is the outward normal vector of contour
y and 7 is the tangent vector of ¥ in clockwise order. Indeed, 7 = MTN
is the tangent vector and
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One can introduce a Finsler metric F : Q x RZ — R:

P(x)[[ul[+ (V(x),u),

which is positive, provided one has the smallness condition [1]:

vt e [0,1].
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V)| < P(x), VxeQ. (10)
In practice, it is difficult to satisfy the smallness condition (10). Assuming

that Vx € Q, P(x) > 1, we make use of the following condition:

IV(x)|| < min{P(y)} =1, VYxeQ. (11)
yeQ

In view of F and (5), the energy E (3) is converted to the Finsler geodesic

energy:
£ = [ Forto, o 1)

Computing the vector field V| and Finsler Metric F: The minimiza-
tion procedure of £ (12) is solved inside a neighbourhood U instead of
the whole domain Q. This means that we only require the vector field
VL defined over U. In order to satisfy the smallness condition (10), it is
natural to select a solution to (4) minimizing an energy

min{/UHVL(X)szX} st. V-V (x)=af(x), ¥xeU. (13)

Despite the rich regularity for solutions to elliptic PDEs, we could not find
aresult directly implying that the solution to (13) obeys the desired small-
ness condition (10). However, such a result can easily be established for
a different solution to the divergence equation (4), given by convolution
with an explicit kernel
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In that case one indeed obtains using Holder’s inequality
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where Dy is a disk centered around x and with the same area Ay as U.
p,q are two positive constants obeying 1/p+1/g=1and ¢ > 2. n is
a constant and py = % f% > 0. ||fll4 is the L7 norm of f on U. The
condition (11) is thus satisfied when the area of U is sufficiently small.

Finsler Metric Construction: The vector field V| solution to (13) de-
pends on the neighbourhood U. In order to obtain a vector field obey-
ing ||V || < 1, one choose a tubular neighbourhood U with small width
hence a small area. On the other hand, U is regarded as the search space
for the next evolutional curve. A small U may therefore make the algo-
rithm fall into undesirable local minimas of the geodesic energy £. Thus
we use a trick to solve this problem by invoking a non-linear mapping in-
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creasing function 7 : R* — (0, 1) defined as T'(x) = 1 —exp(—x), Vx > 0.
Thus the new vector field V can be expressed by
V) =T(Vi®DMVL®/Vix)], YxeQ  16)

where the smallness condition (11) will be immediately satisfied and M is
the counter-clockwise rotation matrix with rotation angle 6 = /2. Based
on the vector field V, the Finsler metric is denoted by F and the geodesic
energy L is defined by (12) with F := F.

The minimization of E (3) is transferred to the minimization of L.
Note that since in general we induce £ with a nonlinear mapping T, there
is in fact slight difference in the minimization problems and the results
show that our geodesic method is very efficient and robust. The non-linear
mapping 7 is reasonable: 1) The minimization of E in (5) is relevant to
both the directions of ¥ and the norm of V), i.e., minimizing E is to find
a path v, for which the direction y/(¢) for each ¢ € [0, 1] should be as op-
posite to V((r)) as possible and the norm ||V (y(z)) || should be as large
as possible, giving the relevance between the minimization problems of
E and L. Introducing 7 will not modify both goals of the minimiza-
tion problems. 2) When the Finsler geodesics evolution scheme tends to
stabilize, one can reduce the width of tubular neighbourhood U. Thus
T(|V|)) = || V| as ||V|| is small.
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