
An Octree-Based Approach towards Efficient Variational Range Data Fusion

Wadim Kehl 1

kehl@in.tum.de

Tobias Holl 1

holl@in.tum.de

Federico Tombari 12

tombari@in.tum.de

Slobodan Ilic 13

slobodan.ilic@siemens.com

Nassir Navab 1

navab@cs.tum.edu

1 Computer-Aided Medical Procedures,
TU Munich, Germany

2 Computer Vision Lab (DISI),
University of Bologna, Italy

3 Siemens AG
Research & Technology Center
Munich, Germany

Figure 1: Our work deals with robust variational fusion of range scans.
Given a sequence of input frames, we optimize over Octree-structures
representing transformed input TSDFs into a common evolving Octree to
finally retrieve an accurate and smooth meshed reconstruction.

Volume-based reconstruction is usually expensive both in terms of
memory consumption and runtime. Especially for sparse geometric struc-
tures, volumetric representations produce a huge computational overhead.
We present an efficient way to fuse range data via a variational Octree-
based minimization approach by taking the actual range data geometry
into account. We transform the data into Octree-based truncated signed
distance fields and show how the optimization can be conducted on the
newly created structures. The main challenge is to uphold speed and a
low memory footprint without sacrificing the solutions’ accuracy during
optimization. We explain how to dynamically adjust the optimizer’s ge-
ometric structure via joining/splitting of Octree nodes and how to define
the operators. We evaluate on various datasets and outline the suitability
in terms of performance and geometric accuracy.

SDF construction The generation of the TSDFs fi : Ω3 ⊂ R3→ R fol-
lows related work [1, 2, 3]: given the i-th frame of range data Di : Ω2→
R+ together with the projection πi : R3→Ω2, the idea is to compute the
signed distance φi between the surface and each point x ∈ Ω3 of the re-
construction volume along the line of sight. Furthermore, scaling with δ

and truncation to [−1,+1] is performed to retrieve the final TSDF fi

fi(x) =

{
sgn(φi(x)) if |φi(x)|> δ

φi(x)/δ else
,φi(x) =Di(πi(x))−||x−Ci||. (1)

Octree construction We construct TSDF-Octrees f ∗i from fi in a top-
to-bottom manner. Starting from root node n, we define the spread s of
values subsumed by node n in f as

s f (n) =
∣∣∣∣ max

x∈Ω3(n)
f (x)− min

x∈Ω3(n)
f (x)

∣∣∣∣ (2)

with Ω3(n) being the subvolume that node n represents. Initially, Ω3(n) =
Ω3 and the spread will be maximal. From here we recursively apply a
splitting rule: if the spread s f (n) at node n is higher than a threshold
τ = 0.1, we subdivide n into eight children and proceed further down.

Variational Octree optimization We define a strictly-convex func-
tional based on our Octree-representation

E(u∗) :=
∫

Ω3

D(f∗,w∗,u∗)
∑i w∗i + γ

+λS(∇u∗) dx, (3)

Figure 2: Left: Memory usage of the dense iterate u and Octree u∗ during
the optimization for the ’head’ sequence. The usage goes down quickly
for the Octree-variant as the surface evolves in the TSDF, leading to many
block joins. Center/Right: Slicing through u∗ at iterations 1 and 100.

and solve for u∗ with a small γ in the normalizer to avoid division prob-
lems for unseen voxels. To optimize Equation 3, we determine the steady
state of our PDE with a constantly evolving Octree u∗

∂E
u∗

= λ div(S∇u∗(∇u∗))− Du∗(f∗,w∗,u∗)
∑i w∗i + γ

. (4)

We conduct the optimization by having at all times only one version
of u∗ in memory and adjusting the structure while we recursively traverse
into each node of u∗. This means that instead of integrating point-wise
over the volume, we start from the root and run along the tree while con-
ducting our computations/restructuring on it before proceeding to the next
node in the volume in the same pass. Furthermore, we compute the gradi-
ent and the divergence in a manner that the induced error from the Octree
partitioning has a negligible effect on the numerical update.

Results For all employed sequences (synthetic, low-cost RGB-D sen-
sor, high-precision depth sensor) we constantly retrieve very accurate so-
lutions that are on par with their dense versions in terms of metric fidelity
(Figure 3). Furthermore, the total amount of memory needed is drastically
reduced with the Octree approach. To give another interesting insight we
plot the memory consumption of u∗ during the optimization in Figure
2. While in the dense approach each iterate ut is constant in memory,
its Octree-variant quickly decreases its memory footprint after more and
more blocks get joined.

Figure 3: Example frame from one sequence, meshed result and recon-
struction difference between the dense and the Octree version.

[1] Wadim Kehl, Nassir Navab, and Slobodan Ilic. Coloured signed distance fields
for full 3D object reconstruction. In BMVC, 2014.

[2] Christopher Schroers, Henning Zimmer, Levi Valgaerts, Oliver Demetz, and
Joachim Weickert. Anisotropic Range Image Integration. Pattern Recognition,
LNCS, 2012.

[3] Christopher Zach, Thomas Pock, and Horst Bischof. A globally optimal algo-
rithm for robust TV-L1 range image integration. In ICCV, 2007.

