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Abstract

Sparse coding with dictionary learning (DL) has shown excellent classification per-
formance. Despite the considerable number of existing works, how to obtain features on
top of which dictionaries can be better learned remains an open and interesting question.
Many current prevailing DL methods directly adopt well-performing crafted features.
While such strategy may empirically work well, it ignores certain intrinsic relationship
between dictionaries and features. We propose a framework where features and dictio-
naries are jointly learned and optimized. The framework, named “joint non-negative pro-
jection and dictionary learning” (JNPDL), enables interaction between the input features
and the dictionaries. The non-negative projection leads to discriminative parts-based
object features while DL seeks a more suitable representation. Discriminative graph
constraints are further imposed to simultaneously maximize intra-class compactness and
inter-class separability. Experiments on both image and image set classification show the
excellent performance of JNPDL by outperforming several state-of-the-art approaches.

1 Introduction
Sparse coding has been widely applied in a variety of computer vision problems where one
seeks to represent a signal as a sparse linear combination of bases (dictionary atoms). Dic-
tionary plays an important role as it is expected to robustly represent components of the
query signal. [22] proposed the sparse representation-based classification (SRC) in which
the entire training set is treated as a structured dictionary. Methods taking off-the-shelf bases
(e.g., wavelets) as the dictionary were also proposed [7]. While such strategy is straight
forward and convenient, research also indicates that it may not be optimal for classification
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Figure 1. An illustration of JNPDL. The dictionary and non-negative projection are jointly learned with discrimi-
native graph constraints.

tasks. Many currently prevailing approaches choose to learn dictionaries directly from train-
ing data and have leaded to good results in face recognition [8, 10, 24, 26, 29] and image
classification [25]. These dictionary updating strategies are referred to as dictionary learning
(DL). DL received significant attention for its excellent representation power. Such advan-
tage mainly comes from the fact that allowing the update of dictionary atoms often results
in additional flexibility to discover better intrinsic signal patterns, therefore leading to more
robust representations.

DL methods can be broadly divided into unsupervised DL and supervised DL. Due to
the lack of label information, unsupervised DL only guarantees to discover signal patterns
that are representative, but not necessarily discriminative. Supervised DL exploits the in-
formation among classes and requires the learned dictionary to be discriminative. Related
literatures include the discriminative K-SVD [29] and label-consistent K-SVD [8]. Dictio-
nary regularization terms which takes label information into account were also introduced
[1, 16, 17]. For stronger discrimination, [24, 26] tried to learn a discriminative dictionary
via the Fisher discrimination criteria. More recently, [25] proposed a latent DL method by
jointly learning a latent matrix to adaptively build the relationship between dictionary atoms
and class labels.

Different from the conventional wide variety of discriminative DL literatures, our work
casts an alternative view on this problem. One major purpose of this paper is to jointly learn
a feature projection that improves DL. Instead of keep exploiting additional discrimination
from the dictionary representation, we consider optimizing the input feature to further im-
prove the learned dictionary. We believe such process can considerably influence the quality
of learned dictionary, while a better learned dictionary may directly improve subsequent
classification performance.

Given that mid-level object parts are often discriminative for classification, we aim to
learn a feature projection that mines these discriminative patterns. It is well-known that non-
negative matrix factorization (NMF) [11] can learn similar part-like components. In the light
of NMF and projective NMF (PNMF) [13], we consider the projective self-representation
(PSR) model where the set of training samples YYY is approximately factorized as: YYY ≈MMMPPPYYY .
The model jointly learns both the intermediate basis matrix MMM and the projection matrix PPP
with non-negativity such that the additive (non-subtractive) combinations leads to learned
projected features PPPYYY accentuating spatial object parts. In the paper, we propose a novel
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NMF-like feature projection learning framework on top of the PSR model to simultaneous-
ly incorporate label information with discriminative graph constraints. One shall see, our
proposed framework can be viewed as a tradeoff between NMF and feature learning [30].

The dictionary representation is further discriminatively learned given the projected input
features. An overview of the joint non-negative projection and dictionary learning (JNPDL)
framework is illustrated in Fig. 1. The construction of discriminative graph constraints in
both non-negative projection and dictionary learning follows the graph embedding frame-
work [23]. While the inputs of graph constraints are essentially the same, they form different
regularization terms for the convenience of optimization. Finally, a discriminative recon-
struction constraint is also adopted so that coding coefficients will only well represent sam-
ples from their own classes but poorly represent samples from other classes. We test JNPDL
in both image classification and image set classification with comprehensive evaluations,
showing the excellent performance of JNPDL.

2 Related Works
Only a few works [3, 15, 28] have discussed similar ideas but have all reported more com-
petitive performance than conventional DL methods. [15] proposed a framework which si-
multaneously learns feature and dictionary. Their work focused on learning a reconstructive
feature (filterbank) with similar idea in [30]. The work in [3] jointly learns a dimensionality
reduction matrix and a dictionary for face recognition. Unlike JNPDL, the model focused on
low-dimensional representation without discriminative constraints. The source of discrim-
ination purely comes from a Fisher-like constraint on coding coefficients. [28] presented
a simultaneous projection and dictionary learning method with carefully designed discrim-
inative sigmoid reconstruction error. Their method represents the input samples with the
multiplication of projection matrix and dictionary, which differs significantly from JNPDL.
[5] presents a novel dictionary pair learning approach for pattern classification, which also
partially resembles our framework.

3 The Proposed JNPDL Model
Let YYY be a set of s-dimensional training samples, i.e., YYY = {YYY 1,YYY 2, · · · ,YYY K}where YYY i denotes
the training samples from class i. The learned structured (class-specific) dictionary is denot-
ed by DDD = {DDD1,DDD2, · · · ,DDDK} and the corresponding sparse representation of the training
samples over dictionary DDD is defined as XXX = {XXX1,XXX2, · · · ,XXXK}. MMM is the intermediate non-
negative basis matrix while PPP ∈ Rsp×s denotes the projection matrix. In order to avoid high
inter-class correlations and benefit subsequent sparse coding, JNPDL first projects training
samples to a more discriminative space before dictionary encoding. Similar process applies
for testing. At training, the projection, dictionary and encoded coefficients are jointly learned
with the following model:

〈DDD,MMM,PPP,XXX〉= arg min
DDD,MMM≥000,PPP≥000,XXX

{
R(DDD,PPP,XXX)+α1Gp(PPP,MMM)+α2Gc(XXX)+α3‖XXX‖1

}
, (1)

where α1,α2 and α3 are scalar constants, and R(DDD,PPP,XXX) is the discriminative reconstruction
error. Gp(PPP,MMM) is the graph-based projection term learning the NMF-like feature projection,
while Gc(XXX) is the graph-based coding coefficients term imposing discriminative label in-
formation to DL.
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3.1 Discriminative Reconstruction Error
Discriminative reconstruction error targets the three following objectives: minimizing the
global reconstruction error, minimizing the local reconstruction error1 and maximizing the
non-local reconstruction error. The term is defined as:

R(DDD,PPP,XXX) = ‖PPPYYY −DDDXXX‖2
F +

K

∑
i=1
‖PPPYYY i−DDDiXXX i

i‖2
F +

K

∑
i=1

K

∑
j=1, j 6=i

‖DDD jXXX
j
i ‖2

F , (2)

where XXX j
i denotes the coding coefficients of samples YYY i associated with the sub-dictionary

DDD j. ∑K
i=1 ‖YYY i−DDDiXXX i

i‖2
F denotes the local reconstruction error that requires the local sub-

dictionaries DDDi
i well represent samples from class i. ‖DDD jXXX

j
i ‖2

F is further minimized such that
inter-class coefficients XXX j

i , i 6= j are relatively small compared with XXX i
i.

3.2 Graph-based Coding Coefficients Term
The term seeks to constrain the intra-class coding coefficients to be similar while the inter-
class ones to be significantly dissimilar. We first construct an intrinsic graph for intra-class
compactness and a penalty graph for inter-class separability. Rewriting the coding coeffi-
cients XXX as XXX = {xxx1,xxx2, · · · ,xxxN} where N is the number of training samples, the similarity
matrix of the intrinsic graph is defined as:

{WWW c}i j =

{
1, if i ∈ S+k1

( j) or j ∈ S+k1
(i)

0, otherwise
, (3)

where S+k1
(i) indicates the index set of the k1 nearest intra-class neighbors of sample xxxi.

Similarly, the similarity matrix of the penalty graph is defined as:

{WWW p
c }i j =

{
1, j ∈ S−k2

(i) or i ∈ S−k2
( j)

0, otherwise
, (4)

where S−k2
(i) denotes the index set of the k2 nearest inter-class neighbors of xxxi. the coeffi-

cients term is defined as:

Gc(XXX) = Tr(XXXT LLLcXXX)−Tr(XXXT LLLp
c XXX), (5)

where LLLc =BBBc−WWW c in which BBBc =∑ j 6=i{WWW c}i j and LLLp
c =BBBp

c−WWW p
c in which BBBp

c =∑ j 6=i{WWW p
c}i j.

Imposing the graph-based discrimination makes the coding coefficients more discriminative.
Interestingly, most existing discriminative coding coefficients term, such as in [15, 26], are
special cases of the graph-based discrimination constraint.

3.3 Graph-based Non-negative Projection Term
This term aims to learn a non-negative projection that maps the training samples to a dis-
criminative space. Inspired by [13], we design a structured projection matrix by dividing the
projection matrix PPP into two parts:

YYY pro j =

[
ŶYY

pro j

ỸYY pro j

]
= PPPYYY =

[
P̂PP
P̃PP

]
YYY (6)

1Stands for the reconstruction with atoms from the same class.
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where ŶYY
pro j

= {ŷyypro j
1 , · · · , ŷyypro j

N } ∈ Rq×N that serves for the certain purpose of graph em-
bedding, and ỸYY pro j

= {ỹyypro j
1 , · · · , ỹyypro j

N } ∈R(sp−q)×N that contains the additional information
for data reconstruction (ỸYY pro j is a relaxed matrix that compensates the information loss in
ŶYY

pro j
). Note that ŶYY

pro j
preserves the discriminative graph properties while the whole YYY pro j

is used for data reconstruction purpose. Therefore the purposes of data reconstruction and
graph embedding coexist harmoniously and do not mutually compromise like conventional
formulations with multiple objectives. The basis matrix MMM is correspondingly divided into
two parts MMM = {M̂MM,M̃MM} in which M̂MM ∈ Rs×q and M̃MM ∈ Rs×(sp−q). M̃MM can be considered as the
complementary space of M̂MM.

We first define yyypro j
j as the jth column vector of YYY pro j and then construct the intrinsic

graph and the penalty graph using the same procedure as graph-based coding coefficients
term. The construction of the similarity matrix WWW p and WWW p

p for intrinsic graph and the penalty
graph is identical to WWW c and WWW p

c , except that WWW p and WWW p
p measure the similarities among

features and adopt different parameters. Differently, WWW c and WWW p
c measure similarities among

coding coefficients. As [23] suggests, we have two objectives to preserve graph properties
and enhance discrimination:

{
max

ŶYY
pro j ∑i6= j ‖ŷyypro j

i − ŷyypro j
j ‖2

2{WWW
p
p}i j

min
ŶYY

pro j ∑i 6= j ‖ŷyypro j
i − ŷyypro j

j ‖2
2{WWW p}i j

. (7)

∑i 6= j ‖yyypro j
i −yyypro j

j ‖2
2{WWW p}i j =∑i6= j ‖ŷyypro j

i − ŷyypro j
j ‖2

2{WWW p}i j+∑i6= j ‖ỹyypro j
i − ỹyypro j

j ‖2
2{WWW p}i j,

for a specific YYY pro j, minimizing the objective function with respect to ỸYY pro j is equivalent to
maximizing the objective function associated with the complementary part, i.e., ŶYY

pro j
. Thus

we constrain the projection matrix with the following equivalent objective:
{

minP̂PP Tr(P̂PPYYY LLLpYYY T P̂PP
T
)

minP̃PP Tr(P̃PPYYY LLLp
pYYY T P̃PPT

)
(8)

where LLLp = BBBp −WWW p in which BBBp = ∑ j 6=i{WWW p}i j and LLLp
p = BBBp

p −WWW p
p in which BBBp

p =

∑ j 6=i{WWW p
p}i j. we formulate the graph-based projection term as follows:

Gp(PPP,MMM) = ‖YYY −MMMPPPYYY‖2
F +β ·Tr(P̂PPYYY LLLpYYY T P̂PP

T
)+β ·Tr(P̃PPYYY LLLp

pYYY T P̃PPT
)+‖MMM−PPPT ‖2

F , (9)

where β is a scaling constant and each column of MMM is normalized to unit l2 norm. We use
‖YYY−MMMPPPYYY‖2

F +‖MMM−PPPT‖2
F to incorporate the projection matrix into a NMF-like framework,

and these two terms can further ensure the reconstruction ability of the projection PPP and avoid
the trivial solutions of PPP. they serve similar role to the auto-encoder style reconstruction
penalty term in [18, 30, 31]. Other terms in Gp(PPP) preserve the graph properties and enhance
discrimination.

4 Optimization
We adopt standard iterative learning to jointly learn XXX , PPP, MMM and DDD. The proposed algorithm
is shown in Algorithm 1. Because of the limited space, we present the detailed optimization
framework in Appendix A. We also provide its convergence analysis in Appendix B. All
the appendixes are included in the supplementary material which can be found at http:
//wyliu.com/.
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Algorithm 1 Training Procedure of JNPDL

Input: Training samples YYY = ‖YYY 1, · · · ,YYY N‖, intrinsic graph WWW c,WWW p, penalty graph WWW p
c ,WWW

p
p, param-

eters α1,α2,α3,β , iteration number T .
Output: Non-negative projection matrix PPP, dictionary DDD, coding coefficient matrix XXX .

Step1: Initialization
1: t = 1.
2: Randomly initialize columns in DDD0,MMM0 with unit l2 norm.
3: Initialize xxxi,1≤i≤N with ((DDD0)T (DDD0)+λ2III)−1(DDD0)T yyyi where yyyi is the ith training sample (regard-

less of label).
Step2: Search local optima

4: while not convergence or t < T do
5: Solve PPPt ,MMMt iteratively with fixed DDDt−1 and XXX t−1 via non-negative projection learning.
6: Solve XXX t with fixed MMMt , DDDt−1 and PPPt via non-negative projection learning.
7: Solve DDDt with fixed MMMt , PPPt and XXX t via discriminative DL.
8: t← t +1.
9: end while

Step3: Output
10: Output PPP = PPPt , DDD = DDDt and XXX = XXX t .

5 Classification Strategy
When the projection and the dictionary have been learned, we need to project the testing
image via learned projection, code the projected sample over the learned dictionary and
eventually obtain its coding coefficients which is expected to be discriminative. We first
project the testing sample and then code it over the learning dictionary via

x̂xx = argmin
xxx
{‖PPPyyy−DDDxxx‖2

2 +λ1‖xxx‖1} (10)

where λ is a constant. After obtaining the coding coefficients x̂xx, we classify the testing
sample via

label(yyy) = argmin
i

{
‖PPPyyy−DDDiδi(xxx)‖2

2 +σ‖xxx−mmmi‖2
2
}

(11)

where σ is a weight to balance these two terms, and δi(·) is the characteristic function that
selects the coefficients associated with ith class. mmmi is the mean vector of the learned coding
coefficient matrix of class i, i.e., XXX i. Incorporating the term ‖xxx−mmmi‖2

2 is to make the best
of the discrimination within the dictionary, because the dictionary is learned to make coding
coefficients similar from the same class and dissimilar among different classes.

6 Experiments

6.1 Implementation Details
We evaluate JNPDL by both image classification and image set classification. We con-
struct WWW p and WWW p

p with correlation similarity, and set the number of nearest neighbors as
min(nc− 1,5) where nc is the training sample number in class c. The number of shortest
pairs from different classes is 20 for each class. For WWW c and WWW p

c , we first remove the graph-
based coding coefficients term in Eq. 1 and solve the optimization. The Euclidean distances
among the coding coefficients of training samples are used as initial neighbor metric. We
set k1 = min(nc−1,5),k2 = 30. For all experiments, we fix α1 = 1,α2 = 1 and α3 = 0.05.
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Table 1. Recognition accuracy (%) on extended Yale B and AR.
Method ExYaleB AR Face Method ExYaleB AR Face

SVM 88.8 87.1 JDDRDL [3] 90.1 90.9
SRC [22] 91.0 88.5 FDDL [26] 91.9 92.1

D-KSVD [29] 75.3 85.4 DSRC [28] 89.6 88.2
LC-KSVD [8] 86.8 90.2 JNPDL 94.1 94.7

Table 2. Accuracy (%) vs. feature dimension on AR dataset.

Dimension 100 200 300 500
SRC [22] 84.0 87.3 88.5 89.7

FDDL [26] 85.7 88.5 92.0 92.2
DSRC [28] 84.8 86.9 88.2 89.1

JDDRDL [3] 82.5 87.7 90.9 91.6
JNPDL 88.3 92.4 94.7 95.1

Other parameters for JNPDL are obtained via 5-fold cross validation to avoid over-fitting.
Specifically, we use β = 0.7,λ1 = 5×10−6 and σ = 0.05 for image classification. For image
set based face recognition, we set β = 0.8,λ2 = 0.001×N/700 where N is the number of
training samples. For all baselines, we usually use their original settings or carefully imple-
ment them following the paper. All results are the average value of 10 times independent
experiments.

6.2 Application to Image Classification
6.2.1 Face recognition

We evaluate JNPDL on the Extended Yale B (ExYaleB)2 and AR Face Dataset3. For both
ExYaleB and AR Face, we exactly follow the same training/testing set selection in [24]. The
dictionary size is set to half of the training samples. SRC [22] uses all training samples as
the dictionary.

Comparison with state-of-the-art approaches. We compare JNPDL with state-of-the-
art DL approaches including D-KSVD [29], LC-KSVD [8] and FDDL [25]. DSRC [28]
and JDDRDL [3] which share similar philosophy are also compared. JNPDL, DSRC and
JDDRDL uses the original images for training and set the feature dimension after projec-
tion as 300. All the other methods use the 300-dimensional Eigenface feature. SRC and
Linear SVM are used as baselines. Results are shown in Table 1. One can see that JNPDL
achieves promising recognition accuracy on both datasets, respectively achieving 2.2% and
2.6% improvement over the second best approaches.

Accuracy vs. Feature dimensionality. We vary the feature dimension after projection to
evaluate the performance of JNPDL on AR dataset. For SRC and FDDL, the dimensionality
reduction is performed by Eigenface. Table 2 indicates that jointly learned projection can
preserve much discriminative information even at low feature dimension.

Joint projection learning vs. Separate projection. Projection and dictionary can al-
so be learned separately. We compare it with joint learning to validate our motivation for
JNPDL. We also remove projection learning from JNPDL and use Eigenface features with

2The extended Yale B dataset consists of 2,414 frontal face images from 38 individuals. All images are normal-
ized to 54×48.

3The AR dataset consists of over 4,000 frontal images for 126 individuals. For each individual, 26 pictures were
taken in two separated sessions. All images in AR are normalized to 60×43.
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Table 3. Accuracy (%) of different projection.

Method ExYaleB AR Face
JNPDL (with Eigenface) 91.8 92.2

JNPDL (Separate Learning) 92.1 92.5
JNPDL (Joint Learning) 94.1 94.7

Table 4. Recognition Accuracy (%) on LFWa Dataset.

Method Acc. Method Acc. Method Acc. Method Acc.
SVM 63.0 COPAR [10] 72.6 D-KSVD 65.9 LDL [25] 77.2
SRC 72.7 FDDL 74.8 LC-KSVD 66.0 JNPDL 78.1

dimension set to 300. Results are shown in Table 3. Results show that JNPDL jointly learn-
ing projection and dictionary achieves the best accuracy.

Face recognition in the wild. we apply JNPDL in a more challenging face recognition
task with LWFa dataset [21] which is an aligned version of LFW. We use 143 subject with
no less than 11 samples per subject in LFWa dataset (4174 images in total) to perform the
experiment. The first 10 samples are selected as the training samples and the rest is for
testing. Following [25], histogram of uniform-LBP is extracted by partitioning face into
10×8 patches. PCA is used to reduce the dimension to 1000. Results are shown in Table 4,
with JNPDL achieving the best.

6.2.2 Object categorization

We perform the object categorization experiment on 17 Oxford Flower dataset and use the
default experiment setup as in [26]. We compare JNPDL with MTJSRC [27], COPAR,
JDDRDL, DSRC, FDDL, SDL, LLC and two baseline: SRC, SVM. For fair comparison, we
use the Frequent Local Histogram (FLH) feature to generate a kernel-based feature descriptor
the same as [26]. Table 5 shows that JNPDL is slightly worse than FDDL but is better than
most competitive approaches. We believe that it is because the kernel features are already
quite discriminative and projection does not help much.

6.3 Application to Image Set Classification

6.3.1 Classification strategy for image set classification

Applying the classification in Section 5 to each video frame altogether with a voting s-
trategy, JNPDL can be easily extended to image set classification. Given a testing video
Y te = {yyyte

1 ,yyy
te
2 , · · · ,yyyte

Kt
} in which yyyte

j is the jth frame and Kt is the number of image frames in
the video, we project each frame to a feature via the learned non-negative projection PPP and
obtain its coding coefficients with Eq. (10). Thus the label of a video frame can be obtain
by Eq. (11). After getting all the labels of frames, we perform a majority voting to decide
the label of the given image set. For testing efficiency, we replace the l1 norm ‖xxx‖1 with a l2
norm ‖xxx‖2

2 and derive the decision:

label(yyyte
j ) = argmin

i
{‖PPPyyyte

j −DDDiδi(DDD†yyyte
j )‖2

2}. (12)

where DDD† = (DDDT DDD+λ2III)−1DDDT . Eventually we use the majority voting to decide the label
of a video (image set).
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Table 5. Recognition Accuracy (%) on 17 Oxford Flower Dataset.

Method Accuracy Method Accuracy
SVM 88.6 MTJSRC 88.4
SRC 88.4 COPAR 88.6

LLC (20 bases) 89.7 SDL 91.0
JDDRDL 87.7 FDDL 91.7

DSRC 88.9 JNPDL 92.1

Table 6. Recognition acc. (%) on Honda, MoBo, YTC datasets.

Method Honda MoBo YTC Method Honda MoBo YTC
DCC [9] 94.9 88.1 64.8 SANP [6] 93.6 96.1 68.3

MMD [20] 94.9 91.7 66.7 LMKML [14] 98.5 96.3 78.2
MDA [19] 97.4 94.4 68.1 SFDL [15] 100 96.7 76.7
CHISD [2] 92.5 95.8 67.4 JNPDL 100 97.1 77.4

6.3.2 Image set based face recognition

Three video face recognition benchmark dataset, including Honda/UCSD [12]4, CMU MoBo
[4]5 and YouTube Celebrities (YTC)6 are used to evaluate the proposed JNPDL. For fair
comparison, we follows the experimental setup in [15]. We use Viola-Jones face detector to
capture faces and then resize them to 30×30 intensity image. Each image frame is cropped
into 30× 30 according to the provided eye coordinates. Thus each video is represented as
an image set. Following standard experiment protocol as in [2, 15], the detected face images
are histogram equalized but no further preprocessing, and the image features are raw pixel
values.

Comparison with state-of-the-art approaches. For both the Honda/UCSD and CMU
MoBo datasets, we randomly select one face video per person as the training samples and
the rest as testing samples. For YTC dataset, we equally divide the whole dataset into five
folds, and each fold contains 9 videos per person. In each fold, we randomly select 3 face
videos per person for training and use the rest for testing. We compare JNPDL with DCC [9],
MMD [20], MDA [19], CHISD [2], SANP [6], LMKML [14] and SFDL [15]. The settings
of these approaches are basically the same as [15]. We select the best accuracy that JNPDL
achieves with projected dimensions from 50, 100, 150, 200 and 300. Results in Table 6 show
the superiority of the proposed method.

Accuracy vs. Frame number. We evaluate the performance of JNPDL when videos
contain different number of image frames on YTC dataset. We randomly select 50, 100
and 200 frames from each face image set for training and select another 50, 100, 200 for
testing. If an image set does not have enough frames, all frames are used. We select the best
accuracy JNPDL achieves with projected dimension equal to 50, 100, 150, 200 and 300. Fig.
2 shows JNPDL achieves better accuracy than the other approaches. It can be learned that
the discrimination power of JNPDL is strong even with small training set.

Efficiency. The computational time for JNPDL to recognize a query image set is approx-
imately 5 seconds with a 3.4GHz Dual-core CPU and 16GB RAM, which is comparable to
[2, 15] and slightly higher than [9, 19, 20].

4Contains 59 face video of 20 individuals with large pose and expression variations, and average length of 400
frames.

5Consists of 96 videos from 24 subjects, each containing 5 videos of different walking patterns.
6Contains 1910 video sequences of 47 celebrities from YouTube. Most videos contain noisy and low-resolution

image frames.
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Figure 2. Recognition accuracy with different number of frames.

7 Concluding Remarks
In this paper, we proposed a novel joint non-negative projection and dictionary learning
framework where non-negative feature projection and dictionary are simultaneously learned
with discriminative graph constraints. The graph constraints guarantee the discrimination of
projected training samples and coding coefficients. We also proposed a multiplicative non-
negative updating algorithm for the projection learning with convergence guarantee. The
learned feature projection considerably improves the quality learned dictionary, leading to
better classification performance. Experimental results have validated the excellent perfor-
mance of JNPDL on both image classification and image set classification.

Possible future work includes handling nonlinear cases using methods like kernel trick
or other non-linear mapping algorithms, adding more discriminative regularizations to learn
the projection matrix and considering to learn a multiple-layered (hierarchical) projection.
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