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Different from the conventional wide variety of
discriminative Dictionary learning (DL) litera-
tures, our work casts an alternative view on this
problem. One major purpose of this paper is to
jointly learn a feature projection that improves
DL. Instead of keep exploiting additional dis-
crimination from the dictionary representation,
we consider optimizing the input feature to fur-
ther improve the learned dictionary. We be-
lieve such process can considerably influence
the quality of learned dictionary, while a better
learned dictionary may directly improve subse-
quent classification performance.

Given that mid-level object parts are of-
ten discriminative for classification, we aim to
learn a feature projection that mines these dis-
criminative patterns. It is well-known that non-
negative matrix factorization (NMF) [1] can
learn similar part-like components. In the light
of NMF and projective NMF (PNMF) [2], we
consider the projective self-representation (P-
SR) model where the set of training samples
YYY is approximately factorized as: YYY ≈ MMMPPPYYY .
The model jointly learns both the intermedi-
ate basis matrix MMM and the projection matrix PPP
with non-negativity such that the additive (non-
subtractive) combinations leads to learned pro-
jected features PPPYYY accentuating spatial object
parts. In the paper, we propose a novel NMF-like
feature projection learning framework on top of
the PSR model to simultaneously incorporate la-
bel information with discriminative graph con-
straints. One shall see, our proposed framework
can be viewed as a tradeoff between NMF and
feature learning [4].

The dictionary representation is further dis-
criminatively learned given the projected in-
put features. An overview of the joint non-

Figure 1. An illustration of JNPDL.

negative projection and dictionary learning (JN-
PDL) framework is illustrated in Fig. 1. The
construction of discriminative graph constraints
in both non-negative projection and dictionary
learning follows the graph embedding frame-
work [3]. While the inputs of graph constraints
are essentially the same, they form different reg-
ularization terms for the convenience of opti-
mization. Finally, a discriminative reconstruc-
tion constraint is also adopted so that coding co-
efficients will only well represent samples from
their own classes but poorly represent samples
from other classes. We test JNPDL in both im-
age classification and image set classification
with comprehensive evaluations, showing the
excellent performance of JNPDL.
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