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Abstract

Multi-H – an efficient method for the recovery of the tangent planes of a set of point
correspondences satisfying the epipolar constraint is proposed. The problem is formu-
lated as a search for a labeling minimizing an energy that includes a data and spatial
regularization terms. The number of planes is controlled by a combination of Mean-
Shift and α-expansion.

Experiments on the fountain-P11 3D dataset show that Multi-H provides highly accu-
rate tangent plane estimates. It also outperforms all state-of-the-art techniques for multi-
homography estimation on the publicly available AdelaideRMF dataset. Since Multi-H
achieves nearly error-free performance, we introduce and make public a more challeng-
ing dataset for multi-plane fitting evaluation.

1 Introduction
Understanding the structure of indoor and outdoor environments is important in many ap-
plications of computer vision. Man-made objects commonly consist of planar regions, par-
ticularly in an urban environment or indoor scenes. Many algorithms, for diverse problems,
exploit the information captured by planes or planar correspondences. Such problems in-
clude camera calibration [5, 25, 31], robot navigation [4, 33], augmented reality [21] and 3D
reconstruction [28, 32].

This paper addresses the problem of accurate tangent plane estimation by partitioning
the feature correspondences satisfying the epipolar constraint according to the similarity
of their tangent planes. A plane-to-plane correspondence in two images is defined by a
homography [7] which can be estimated in many ways. Methods based on point [7], line [7],
conic [17, 23], local affine frame [1] or region [18] correspondences have been proposed.

Several techniques are available for the estimation of multiple homographies. The popu-
lar RANSAC paradigm has been extended to multiple plane fitting by sequential RANSAC [26,
29] and multiRANSAC [34]. However, the RANSAC strategy suffers from the low inlier ra-
tio of each individual homography. J-Linkage [24] and the recently proposed T-Linkage [11]
are based on the analysis of randomly selected clusters in the preference space which is de-
fined by the assignment costs of data points to clusters. J-Linkage merges the initial clusters
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in the order of their Jaccard distances i.e. the overlap between two sets. T-Linkage extends
this approach to a continuous preference space and modifies the distance function between
two clusters to the Tanimoto distance. Both algorithms decide whether a plane is significant
on the basis of the number of the associated inliers.

The closest work is the PEARL algorithm of Boykov et al. [8]. In PEARL, the multi-
model fitting problem is cleanly formulated as optimization of a global energy functional.
The hypothesizes are initialized by stochastic sampling. The data term of the energy func-
tional captures the cost of a point to homography assignment. A second term introduces spa-
tial regularization reflecting an assumption that the geometric models have non-overlapping
spatial supports and that correspondences which are close are more likely to belong to the
same model. A third term penalizes the number of the models.

Like PEARL, we formulate the problem as a search for energy minimizing labeling. The
energy proposed here is similar: it consists of the same data and spatial regularization terms.
However, in the proposed algorithm, called Multi-H, the third term of PEARL is omitted as
we control the model complexity by a combination of Mean-Shift [6] and α-expansion [3].

Multi-H benefits from a deterministic initialization which we show that together with
a repeated use of Mean-Shift leads to results superior to PEARL. The proposed method
exploits the result of Barath et al. [1] and estimates a homography from a single correspon-
dence and the related affinity. Another strong point is that hard decisions whether a plane
is significant or not are avoided since that depends on the application field. Small planes
are beneficial e.g. for reconstruction, however, we introduce a significance criterion for the
problem of dominant plane retrieval.

The contributions of the paper are: (i) the method for assigning point correspondences
to planes according to the similarity of their tangents that leads to high-quality estimates of
surface normals. Not deciding whether a plane is significant, we benefit from both weakly
and strongly supported planes. (ii) It is shown that the common stochastic sampling stage
of multi-homography fitting algorithms can be improved upon. The Multi-H partitioning
significantly outperforms state-of-the-art multi-homography fitting techniques. (iii) We in-
troduce new, more challenging image pairs for multi-homography estimation and make them
publicly available together with the annotation1.

2 Multiple Homography Estimation – Multi-H
Multi-H estimates tangent plane parameters at each point correspondence by assigning them
to shared planes. Its only required input is an image pair. The output of the algorithm is a
set of homographies defining the tangent planes and a label for each point correspondence
associating it to a homography.

2.1 Point Correspondences with Local Affine Transformations
Several methods are available for the estimation of a local affine transformation at a detected
point pair. We prefer to use affine-covariant feature detectors [14] since they provide point
correspondences and affinities at the same time. We use MODS2 [15] since it is significantly
faster than ASIFT [16]. MODS provides high quality local affine transformations as well as
the epipolar geometry F . The output point correspondences are consistent with fundamental

1http://web.eee.sztaki.hu/home4/node/56
2Available at http://cmp.felk.cvut.cz/wbs/
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matrix F . A different source of point correspondences with local affinities can be used, but
the transformations must be consistent with F since Multi-H exploits this property.

Let us denote the i-th homogeneous point in k-th image with pi
k = [pi,x

k pi,y
k 1]T , i ∈

[1,N], k ∈ {1,2}, and the related local affinity with Ai
k. The transformation between the

infinitely close vicinities of the two points is the one transforming the first affinity to the
second as AiAi

1 = Ai
2. Thus Ai = Ai

2(A
i
1)
−1. The elements of Ai in row-major order are ai

11,
ai

12, ai
21, and ai

22. Fig. 1 visualizes some local affine transformations using ellipses. To make

Figure 1: Corresponding local affine transformations visualized by ellipses.

the measured affinities as accurate as possible, the EG-L2-Opt correction is applied [2].
Homography Hi is calculated for every affine transformation Ai and the corresponding

point pair by the Homography from Affine transformation and Fundamental matrix method
(HAF) [1] . HAF estimates a homography from only one affine correspondence if the funda-
mental matrix is given by solving a system of linear, inhomogeneous equations Cx = b with
coefficient matrix

C =




ai
11 pi,x

1 + pi,x
2 − ex ai

11 pi,y
1 ai

11
ai

12 pi,y
1 + pi,x

2 − ex ai
12 pi,x

1 ai
12

ai
21 pi,x

1 + pi,y
2 − ey ai

21 pi,y
1 ai

21
ai

22 pi,y
1 + pi,y

2 − ey ai
22 pi,x

1 ai
22


 , (1)

where e = [ex ey]T is the epipole on the second image. Vector b = [ f21 f22 − f11 −
f12] is the inhomogeneous part of the four equations and x = [h31 h32 h33]

T is the vector
of the unknown parameters. The optimal solution in the least squares sense is given by x =
C†b where C† is the Moore-Penrose pseudo-inverse of matrix C. The homography matrix is
finally calculated using its last row [1] as follows: h1 j = exh3 j + f2 j, h2 j = eyh3 j + f1 j, where
j ∈ {1,2} and flm, l,m ∈ {1,2,3}, are elements of the fundamental matrix F.

2.2 Alternating Minimization
After the initialization described in the preceding section (Section 2.1), the set of homogra-
phies is improved by alternating three steps (see Alg. 1).
(1) Mean-Shift. Fig. 2 shows that after initialization some of the homographies estimated
from a single correspondence coincide with a surface tangent plane (columns one and two)
and some do not (columns three and four). In each column of Fig. 2, the correspondence
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Figure 2: The images (top, bottom) of the johnsona pair. Blue shaded quadrangles visu-
alise homographies coinciding (columns 1 and 2) and not coinciding (3 and 4) with a surface
tangent plane. The correspondence initializing the homography is marked green. The red
points are inliers obtained by thresholding the re-projection error at 3.0 pixels.

Algorithm 1 The Multi-H Algorithm.
Input: I1, I2 – images; P,A,F := MODS(I1, I2) [15]

P - point correspondences; A – affine transformations; F – fundamental matrix
Output: H – obtained homographies; L – obtained labeling

1: H0 := HAF(P,A,F) [1] . Initialization with point-wise homographies
2: i := 0;
3: repeat . Alternating Minimization
4: i := i+1;
5: Hi := MeanShift(Hi−1) . Default ε = 2.7
6: Li := α-expansion(P,Hi) . Default λ = 0.5, γ = 0.005
7: Hi := LSQHomographyRefinement(P, A, Li, F)
8: until Convergence . ifHi =Hi−1∧Li = Li−1

9: H :=Hi; L := Li

initializing the homography is marked green, and its ε-inliers are in red, with threshold
ε = 3.0 pixels. The tangent planes are visualized by blue quadrangles.

We assume that tangent plane homographies are shared by a number of points and their
parameters emerge as modes in the homography space. Since we do not know the number
of tangent planes in the scene, the mode-seeking Mean-Shift [6] algorithm is adopted. The
projection of the i-th homography in the constructed 6D homography space is

vi =
[
wi,x

1 wi,y
1 wi,x

2 wi,y
2 wi,x

3 wi,y
3

]
, (2)

where

wi
1 =

Hi[0 0 1]T

H i
33

, wi
2 =

Hi[1 0 1]T

H i
13 +H i

33
, wi

3 =
Hi[0 1 1]T

H i
23 +H i

33
.

The denominator of each wi is the projective depth of the transformed point in the nu-
merator. Each vector vi determines a homography which can be recovered from three
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points [0 0 1]T , [1 0 1]T , [0 1 1]T and their projections if the fundamental matrix
is known [1, 7]. Even though there are several possible representations for a homography
(e.g. using its elements, projecting four points, etc.), we prefer to use a low-dimensional
one – the processing time of Mean-Shift highly depends on the dimension of the problem.
Since each coordinate pair [vi

k vi
k+1], k ∈ {1,3,5}, is a given point projected by Hi the dis-

tance function d is chosen as the mean Eucledian distance between the three coordinate pairs
where vi

k is the k-th coordinate of vector vi. The distance between the i-th and j-th feature
vectors is defined as

d(vi,v j) =
1
3

3

∑
k=1
||[vi

2(k−1)+1 vi
2(k−1)+2]

T − [v j
2(k−1)+1 v j

2(k−1)+2]
T ||2.

(2) The α-expansion [3] step minimizes the following energy:

E(L) =
1
λ

Ed(L)+λEs(L), (3)

where L is the current labeling, Ed(L) and Es(L) the data and smoothness terms; λ controls
their balance. The data term is defined as

Ed(L) =
N

∑
i=1
‖pi

2−
Hlipi

1

Hli
31 pi,x

1 +Hli
32 pi,y

1 +Hli
33

‖2, (4)

where Hli is the homography associated with label li ∈ L of the i-th correspondence. The
second term, Es, reflects the assumption that neighboring points are more likely to belong
to the same homography. Es is equal to the number of neighboring points that are labeled
differently:

Es(L) =
N

∑
i=1

N

∑
j=1
Ai jJli 6= l jK, (5)

where N is the number of correspondences, the Iverson bracket J.K is equal to one if the
condition inside holds and zero otherwise, and the elements of the adjacency matrix Ai j are
equal to 1 if correspondences i-th and j-th are spatial neighbors, 0 otherwise. The corre-
spondences are considered to be neighbors if their distance in a 4D concatenated coordinate
space – the vector associated with a correspondence is [px

1 py
1 px

2 py
2]

T – is below γ ,
a control parameter. Matrix A is calculated efficiently using FLANN, the Fast Library for
Approximate Nearest Neighbors [13].

The energy cannot increase in this step due to the nature of the α-expansion algorithm.
A point is assigned to no plane if its distance from the closest one is greater than 3ε which
is an empirically set threshold.
(3) The Least-Squares Homography Refinement runs the HAF method [1] on the corre-
spondences associated with each homography by the current labeling. The number of the
homographies is unchanged. The energy decreases or remains the same since Ed is the
sum of the re-projection errors which are minimized. Es is unchanged since the labeling
does not change.
Convergence is reached when both the number of the clusters and the energy remain un-
changed in two iterations. As the first stage does not increase the number of clusters, the
other stages decrease the energy, and the set of labeling is finite, convergence is ensured. In
experiments reported in Section 3, Alg. 1 converged no later than after eight iterations.
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R PEARL QP-MF FLOSS ARJMC SA-RCM J-Lnkg T-Lnkg Multi-H
johnsonna 4 4.02 18.50 4.16 6.48 5.90 5.07 4.02 2.41
johnsonnb 7 18.18 24.65 18.18 21.49 17.95 18.33 18.17 4.46
ladysymon 2 5.49 18.14 5.91 5.91 7.17 9.25 5.06 0.00

neem 3 5.39 31.95 5.39 8.81 5.81 3.73 3.73 0.00
oldclassicswing 2 1.58 13.72 1.85 1.85 2.11 0.27 0.26 0.00

sene 2 0.80 14.00 0.80 0.80 0.80 0.84 0.40 0.00
mean 5.91 20.16 6.05 7.56 6.62 6.25 5.30 1.19

median 4.71 18.32 4.78 6.20 5.86 4.40 3.87 0.00

Table 1: Misclassification error (%) for the two-view plane segmentation. The selected
image pairs are a subset – the same as used in [11] – of the 19 pairs of AdelaideRMF dataset.
The number of the ground truth planes is denoted with R.

J-Lnkg T-Lnkg RPA SA-RCM Grdy-RansaCov ILP-RansaCov Multi-H
mean 25.50 24.66 17.20 28.30 26.85 12.91 4.40

median 24.48 24.53 17.78 29.40 28.77 12.34 2.41

Table 2: Two-view plane segmentation. Mean and median misclassification error (%) on
the 19 image pairs of the AdelaideRMF dataset.

3 Experimental Results

3.1 Comparison with Multi-homography Fitting Techniques
In this section, Multi-H is tested on the problem of significant plane retrieval. and it outper-
forms the state-of-the-art multi-homography fitting techniques.

Determination of significant planes. To determine whether a detected plane is or is
not significant without strict restrictions on the minimum number of inliers, the following
algorithm is introduced. (1) First, planes with less than four inliers are removed. (2) The
homographies are re-computed using the standard normalized 4-point algorithm [7] followed
by a numerical refinement stage minimizing the re-projection error by Levenberg-Marquardt
optimization. (3) The compatibility constraint [7] for a homography and a fundamental
matrix: HT F+FT H = 0 is imposed by removing Hi for which ||HT

i F+FT Hi||F > θ . After
extensive experimentation we set θ = 1.0.

Multi-H is tested as in [11] on the AdelaideRMF dataset. For each image pair in the
dataset, a set of dominant planes and point pairs on them are provided. However, affine
transformations for the point pairs are not available. Thus as many correspondences and
affinities as possible are obtained by MODS [15]. Then the closest match for every anno-
tated AdelaideRMF correspondence is found among the MODS correspondences. These
correspondences with the local affine transformations are the input of Multi-H.

The misclassification error (ME) is calculated as follows. First, the mapping between the
ground truth lGT ∈ LGT and Multi-H l ∈ L labels is established. We use an iterative method,
always assigning the Multi-H output homography with the highest set overlap of correspon-
dences. The assigned Multi-H homography and ground truth one maximizing the overlap are
then removed from further consideration. Note that if the assignment is not optimal, the re-
ported misclassification errors of Multi-H are over-estimated. ME is the ratio of the number
of different labels ∑N

i=1Jli
GT 6= liK and the number of ground truth correspondences N.3

3The code for the ME calculation is available at http://web.eee.sztaki.hu/home4/node/56
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Figure 3: Resulting partitioning of Multi-H on the AdelaideRMF dataset. Planes are denoted
by colour. There are a few misclassified points (on the top-left and top-middle images around
the edges). They are denoted by small, filled, black circles. Best viewed in colour.

Multi-H is compared with T-Linkage [11], ARJMC [19], PEaRL [8], QP-MF [30], FLoSS
[9], J-Linkage [24] and SA-RCM [20] in Experiment 1 (see Table 1). Every algorithm, in-
cluding Multi-H, has been tuned separately on each image pair. We prefer reporting results
for a setting fixed for the whole dataset, and we do that at the end of this section, but to allow
comparison with the literature we followed the per-image-parameter-setting methodology.
Table 1 shows that Multi-H obtains the lowest mean and median misclassification errors on
the six test image pairs evaluated in the literature [11]. Fig. 3 shows the Multi-H points
color-coded by the homography they were assigned to.

Table 2 shows the mean and median misclassification errors on all 19 image pairs of
the AdelaideRMF dataset. The competitor methods are T-Linkage [11], J-Linkage [24],
RPA [10], SA-RCM [20], Greedy-RansaCov [12] and ILP-RansaCov [12]. Multi-H sig-
nificantly outperforms all published methods. Note the significant difference in the mean
and median misclassification rates obtained on the six selected image, which are commonly
published (Table 1), and on the full dataset.

Even though this dataset is the most frequently used one in the multi-plane fitting litera-
ture, it consists of easy scenes where the planes are perpendicular or far from each other. In
order to test the accuracy of Multi-H, we created a more challenging dataset. Examples of
the new images are visualized in Fig. 4. On these images, point correspondences are detected
by MODS [15] and each is manually annotated to the containing plane. Finally, outliers, i.e.
non-corresponding point pairs, are added to the data. For every image pair, the first image
is the ground truth and the second one is the obtained planar partitioning. Outliers are visu-
alised by black dots on the ground truth images. Pair 4(a) is from the well-known graffiti
test sequence4. Two slightly different planes present in these images. The lower plane is
closer to the camera than the upper one, however, the difference is very small. Even so,
Multi-H accurately distinguishes the two planes and achieves a low misclassification error
of 1.19%. Image pairs 4(b) and 4(c) are a cabinet with books and a staircase viewed from
above. The last two images (4(d)) visualize a room with some boxes and planar-like objects.

4Available at http://www.robots.ox.ac.uk/~vgg/research/affine/
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(a) graffiti (ME = 1.19%) (b) glasscasea (ME = 3.69%)

(c) stairs (ME = 8.74%) (d) boxesandbooks (ME= 3.14%)

Figure 4: Four image pairs of the new dataset. Points coloured according to tangent planes,
manual annotation (left) and Multi-H assignment (right). ME is the misclassification error.

johnsa johnsb ladysymon neem old sene mean median
Multi-H 9.33 10.14 4.49 2.00 1.79 0.00 4.79 3.74
T-Lnkg 34.28 24.04 24.67 25.65 20.66 7.63 22.82 24.36
SA-RCM 36.73 16.46 39.50 41.45 21.30 20.20 29.27 29.02
RPA 10.76 26.76 24.67 19.86 25.25 0.42 17.95 22.27

Table 3: Misclassification error (%) with a fixed parameter setup, average over 5
runs. The following abbreviations are used: johnsonna (johnsa), johnsonnb (johnsb),
oldclassicswing (old).

These tests are more challenging than the ones containing buildings since the observed pla-
nar regions are very small and their orientations are in many cases similar, see e.g. the books
in glasscasea.
Proposed general configuration. For practical point of view, it is desirable that a single
setting of parameters of the method covers most common cases. Through extensive experi-
mentation, we found that λ = 0.5, ε = 2.7, and γ = 0.005 are a robust choice. Table 3 shows
the misclassification error on the AdalaideRMF dataset (average of 5 runs). The results are
significantly worse than those of the separately tuned ones (see Table 1), but much better
than the performance of the competitor algorithms5 with a fixed set-up.

3.2 Evaluation of Surface Normal Accuracy

In this section, the accuracy of planes estimated by Multi-H is compared with the point-
wise estimates of the affine-covariant detector. All planes returned by Multi-H are used, the
significance constraint which was used in the previous section is not applied. The accuracy
was assessed on the fountain-P11 dataset [22] which includes 11 images with resolution
3072 × 2048, projection and calibration camera matrices and reconstructed point clouds

5Experimental results are copied from [10]
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Figure 5: Correspondence clustering into tangent planes for frames 1, 2 of the fountain-P11
set. Planes denoted by colour, estimated surface normals visualized by white line segments.

Frames 1 – 2 3 – 5 1 – 5 6 – 8 5 – 9
Affine Detector 35.7 | 32.7 24.9 | 20.3 19.0 | 15.8 22.5 | 18.6 20.0 | 15.4
EG-L2-Optimal 35.5 | 32.5 23.1 | 19.8 16.7 | 13.9 19.9 | 16.6 17.8 | 14.4
Multi-H 14.4 | 9.4 9.0 | 7.5 7.0 | 5.8 8.8 | 7.3 7.1 | 5.7

Table 4: Mean and median errors (in degrees) of estimated normals for selected image pairs.

with surface normals. Point correspondences of MODS [15] between selected image pairs
were obtained. On average, 920 correspondences were found.

Multi-H partitions correspondences on the basis of their tangent planes. The partitioning
is visualized in Fig. 6. A single homography is fitted using the correspondences in the
same tangent plane cluster. The normals at the correspondences are calculated from the
homography as the camera parameters are known. Table 4 (row 3, Multi-H) shows the mean
and median angular errors of the surface normals calculated from the homographies w.r.t.
ground truth data. The surface normals determined by the homographies are significantly
more accurate then the estimates from the initial local affine transformations output by the
detector (Table 4, first row). Normals estimated after the EG-L2-Optimal procedure [2],
that improves the local affinities using constraints provided by the fundamental matrix, are
significantly less accurate too (Table 4, second row).

3.3 Processing Time and Implementation Details

The speed of the Multi-H procedure was measured on two sets consisting of 100 and 500
correspondences. Since a randomized version of Mean-Shift was used, the algorithm ran
100 times. The mean number of iterations of Algorithm 1 was approx. 6 in both cases. The
average processing times for the 100 and 500 correspondences were 0.04 and 0.80 sec. on a
desktop PC with Intel Core i5-4690 CPU, 3.50 GHz using 4 cores.

Each column of Fig. 6(a) shows the processing time (in milliseconds) far an image pair.
The parts of each bar visualize the time of the different algorithmic steps. The data shows that
Multi-H has negligible time demand compared to the feature detection process (MODS). The
bars associated with the calculation of the adjacency matrix and point-wise homographies
cannot be seen since they require approx. 4−6 milliseconds.

Fig. 6(b) presents the processing time of the alternating minimization. It significantly
drops after the first iteration, then it is constant-like. The drop is caused by the Mean-Shift
that reduces the number of homographies which speeds-up the α-expansion step.
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(a) (b)

Figure 6: (a) Processing time (in milliseconds) of Multi-H applied to different image pairs.
The vertical axis at each column shows the resolution of the images and the correspondence
number. (b) The processing time (in milliseconds) of iterations 1-8 of the alternating mini-
mization on the hartley pair.

Multi-H is implemented in C++. The GCOptimization6 code was used for α-expansion.
A fast Mean-Shift implementation was downloaded from the web7.

4 Conclusions

The Multi-H approach for estimation of tangent planes in image pairs by partitioning fea-
ture correspondences was proposed. The method is accurate, outperforming state-of-the-art
multi-homography fitting techniques for both fixed and per-image parameter setting. Exper-
iments showed that the standard datasets are relatively easy and we therefore augmented the
data with several challenging image pairs which we annotated.

In most applications, Multi-H will run significantly faster than the affine-covariant detec-
tors providing the input. It is real-time on a standard CPU if the number of correspondences
is below approx. 300. A GPU implementation of α-expansion [27] will be real-time capable
for significantly larger problems.

The source code and the annotated dataset are available at http://web.eee.sztaki.
hu/home4/node/56
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