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Abstract

For a pair of images satisfying the epipolar constraint, a method for accurate esti-
mation of local affine transformations is proposed. The method returns the local affine
transformation consistent with the epipolar geometry that is closest in the least squares
sense to the initial estimate provided by an affine-covariant detector. The minimized L2
norm of the affine matrix elements is found in closed-form. We show that the used norm
has an intuitive geometric interpretation.

The method, with negligible computational requirements, is validated on publicly
available benchmarking datasets and on synthetic data. The accuracy of the local affine
transformations is improved for all detectors and all image pairs. Implicitly, precision of
the tested feature detectors was compared. The Hessian-Affine detector combined with
ASIFT view synthesis was the most accurate.

1 Introduction
The paper addresses the problem of precise estimation of local affine transformations in rigid
3D scenes1. Computer vision problems addressed by exploiting local features, e.g. structure-
from-motion, commonly rely on point-to-point correspondences. Using the full local affine
transformation has only become more popular in the last decade. Matas et al. [16] showed
that local affine transformations facilitate two-view matching. Köser and Koch [12] proved
that the 3D camera pose estimation is possible if the corresponding affinity and location of
only one patch is given. Köser [11] showed that 3D points can be precisely triangulated
from local affinities. Bentolila et al. [5] proved that affine transformations give constraints
for estimating the epipoles in the images. Current 3D reconstruction pipelines use point
correspondences as well as patches [6, 7, 24] in order to compute realistic 3D models of
real-world objects. If the epipolar geometry is known, a homography can be estimated from
a single local affinity [1]. Barath et al. [2] showed that there is a one-to-one relationship
between the surface normal and the local affinity.
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It may be distributed unchanged freely in print or electronic forms.

1The generalization to multiple rigid motions each satisfying a different epipolar constraint is straightforward.
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The main goal of the paper is to show how to optimally correct local affine transforma-
tions between two frames, in the least squares sense, if the fundamental matrix F is known.
The fundamental matrix can either be estimated from the local affine transformations [5, 24]
to be refined or from point-to-point correspondences [8]. In calibrated set-ups, F is available.

The refinement of the translation part has been solved by Hartley and Sturm [9] who
exploit the fact that point locations have to satisfy the epipolar geometry: if a point is given
in the first image, its correspondence in the second frame must lie on its epipolar line [10].
The closest, in the least squares sense, locations are computed as the roots of a polynomial of
degree 6. The method proposed in this paper can be seen as an extension of the Hartley and
Sturm method as we consider the full local affinity and present two additional constraints
induced by the epipolar geometry.

Local affine transformations are commonly provided by three types of affine-covariant
detectors. The first group, including MSER [15], estimates full local affine transformations
directly. The second group optimizes the initial estimates – both Harris-Affine [17] and
Hessian-Affine [18] perform the so-called Baumberg iteration [3] in order to obtain high-
quality affinities. Finally, some methods generate synthesized views related by affine trans-
formations and feature detectors are applied to these images. By combining the estimates of
the detector with the transformation related to the current synthetic view, a local affinity is
given for each point correspondence. The most frequently used combined view synthesizer
and feature detector is the Affine SIFT (ASIFT) [23]. However, affine version of commonly
used detectors like SURF [4], ORB [25], BRISK [13], etc. can easily been constructed using
the synthesizer part of ASIFT. Matching On Demand with view Synthesis [20] (MODS) is a
recently proposed method that obtains a mixture of MSER, ORB and Hessian-Affine points
and does as little view-synthesizing as required to detect a predefined number of point pairs.

The contributions of the paper are: the introduction of two novel constraints for local
affine transformations which make them consistent with the epipolar geometry (EG), and
the algorithm to estimate an EG-L2-Optimal (EG-L2-Opt) affine transformation in the least
squares (LSQ) sense by enforcing the proposed constraints. It is also proven that the LSQ
optimization of the parameters has geometric and algebraic interpretations. We show exper-
imentally that the EG-L2-Opt procedure improves the accuracy of the output of all affine-
covariant feature detector. As a side-effect, we determine the accuracy of affine-covariant
feature detectors using ground truth data.

2 EG-L2-Optimal Local Affine Transformation
First, we discuss how to estimate an affine transformation at each corresponding point pair.
Next, the compatibility constraints between an affine transformation and the fundamental
matrix are presented. Finally, the computation of the EG-L2-Opt transformation is discussed.
Local affine transformation. It is an open question how to get a good quality affine trans-
formation related to each point pair in a real-world environment. We propose to use affine-
covariant feature detectors [18] which obtain both the point locations and the affine transfor-
mations at the same time. Possibilities include ASIFT [23], MODS [20], Harris-Affine [19],
Hessian-Affine [19], etc. These feature detectors provide an affine transformation for every
i-th point pi

k = [xi
k yi

k]
T (i∈ [1,n]) on the k-th image (k ∈ 1,2) as Ai

k. The transformation Ai

mapping Ai
1 into Ai

2 is obtained as

Ai = Ai
2(A

i
1)
−1. (1)
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(b) The compatibility constraint for scale states that the
ratio of ||p1−q1||2 and d2 determines the scale of the
related local affine transformation perpendicular to the
epipolar line.

Figure 1: EG-Consistency compatibility constraints for orientation and scale. Matrix A is
the affine transformation, vectors vk and nk are the direction and normal of epipolar line on
which point pk lie in the k-th image (k ∈ {1,2}).

Affine compatibility – Translation. The last column of matrix A is responsible for the
translation between the related point pair. It is shown by Hartley and Sturm [9] that it can be
refined in an optimal way in the least squares sense. Their method minimizes the Euclidean
distance between the original and refined positions. Then the resulting point locations are
fully consistent with the epipolar geometry.
Affine compatibility – Orientation. Affine transformation A is considered as its left 2×2
submatrix in the following sections.

Suppose that the fundamental matrix F and an affine transformation A related to the
corresponding point pair p1 and p2 are given. It is trivial that A is compatible with F only
if it transforms the direction v1 of the related epipolar line l1 (on which p1 lies) on the
first image to that of the second one v2. This means that Av1 ‖ v2. It is well-known in
computer graphics [26] that the direction of the normal after affine transformation is obtained
as A−T n1. Therefore, formula Av1 ‖ v2 is equivalent to

A−Tn1 = βn2, (2)

where nk and β are the normal of the k-th epipolar line (k ∈ {1,2}) and the scale between
vectors A−T n1 and n2, respectively. This is visualized in Fig. 1(a).
Affine compatibility – Scale. It is shown in this section how scale β between vectors A−T n1
and n2 is determined by the epipolar geometry.

Suppose that corresponding homogeneous point pair p1 = [x1 y1 1]T and p2 = [x2 y2 1]T

are given. Let n1 = [nx
1 ny

1]
T and n2 = [nx

2 ny
2]

T be the normal directions of epipolar lines
l11 = FT p2 = [l1,a

1 l1,b
1 l1,c

1 ]T and l12 = Fp1 = [l1,a
2 l1,b

2 l1,c
2 ]T , respectively. Then the task

is to define how the affine transformation A transforms the length of n1. In order to deter-
mine this scale factor let us introduce a new point as q1 = p1 + γn1, where γ is an arbitrary
scalar value. This new point determines an epipolar line l22 = [l2,a

2 l2,b
2 l2,c

2 ]T on the second
image as follows: l22 = Fq1 = F(p1 + γn1). Then scale β is given as the ratio of distances
d1 = ||p1−q1||2 and d2 where d2 is the distance between line l22 and point p2. The problem
is visualized in Fig. 1(b) in detail. The calculation of d2 is written by Eq. 3.

d2 =
|(l1,a

2 + γ f11nx
1 + γ f12ny

1)x2 +(l1,b
2 + γ f21nx

1 + γ f22ny
1)y2 + l1,c

2 + f31nx
1 + f32ny

1|√
(l1,a

2 + γ f11nx
1 + γ f12ny

1)
2 +(l1,b

2 + γ f21nx
1 + γ f22ny

1)
2

(3)
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It is known that point p2 lies on l12, which can be written as l1,a
2 x2 + l1,b

2 y2 + l1,c
2 = 0. This

fact reduces Eq. 3 to Eq. 4.

d2 =
|(γ f11nx

1 + γ f12ny
1)x2 +(γ f21nx

1 + γ f22ny
1)y2 + f31nx

1 + f32ny
1|√

(l1,a
2 + γ f11nx

1 + γ f12ny
1)

2 +(l1,b
2 + γ f21nx

1 + γ f22ny
1)

2
(4)

In order to determine β , the observed point q1 has to be moved infinitely close to p1 (γ→ 0).
This is written by Eq. 5.

β 2 = lim
γ→0

γ2

d2
2
= lim

γ→0

((l1,a
2 + γ f11nx

1 + γ f12ny
1)

2 +(l1,b
2 + γ f21nx

1 + γ f22ny
1)

2)

|( f11nx
1 + f12ny

1)x2 +( f21nx
1 + f22ny

1)y2 + f31nx
1 + f32ny

1|2
(5)

After elementary modifications the final formula for scale β is given by Eq. 6.

β =

√
l1,a
2 l1,a

2 +l1,b
2 l1,b

2
|s1x2+s2y2+s3| , si = fi1nx

1 + fi2ny
1, i ∈ {1,2,3}. (6)

The EG-L2-Opt affinity. Suppose that an observed affine transformation A′ is given. Then
let us denote that by

A′ =
[

a′1 a′2
a′3 a′4

]
. (7)

The task is to find an A where
||A−A′||22 (8)

is minimal and A−T n1 = βn2 (Eq. 2). In order to avoid inversion, it can be reformulated as
n1 = βAT n2. Note that the validity of L2 norm is discussed later in Section. 3.

Scale β can be calculated as it is proposed in the previous section (Eq. 6). Therefore,
condition

n1−βAT n2 = 0 (9)

is linear in the parameters of the affine transformation A. Eq. 9 yields one equation for each
coordinate (x and y) as follows:

nx
1−βnx

2a1−βny
2a3 = 0, ny

1−βnx
2a2−βny

2a4 = 0. (10)

Let us introduce a cost function J applying the constraints defined in Eqs. 8, 10. Using
Lagrange multipliers, the cost function is as follows:

J(A,λ1,λ2) =
1
2

4

∑
i=1

(ai−a′i)
2 +

λ1(nx
1−βnx

2a1−βny
2a3)+λ2(n

y
1−βnx

2a2−βny
2a4), (11)

where λ1 and λ2 are the Lagrange multipliers. Eq. 8 yields non-negative values. Therefore,
the optimal solution is given by the partial derivatives of J:

∂J
∂a1

= a1−a′1−βnx
2λ1 = 0,

∂J
∂a2

= a2−a′2−βnx
2λ2 = 0,

∂J
∂a3

= a3−a′3−βny
2λ1 = 0,

∂J
∂a4

= a4−a′4−βny
2λ2 = 0,

∂J
∂λ1

= nx
1−βnx

2a1−βny
2a3 = 0,

∂J
∂λ2

= ny
1−βnx

2a2−βny
2a4 = 0.
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This is an inhomogeneous, linear system of equations which can be written in form Cx = b,
where x =

[
a1 a2 a3 a4 λ1 λ2

]T , b =
[
a′1 a′2 a′3 a′4 −nx

1 −ny
1
]T , and C are

the vector of the unknown parameters, inhomogeneous part, and coefficient matrix, respec-
tively. C is as follows:

C =




1 0 0 0 −βnx
2 0

0 1 0 0 0 −βnx
2

0 0 1 0 −βny
2 0

0 0 0 1 0 −βny
2

−βnx
2 0 −βny

2 0 0 0
0 −βnx

2 0 −βny
2 0 0



.

The solution is x = C−1b. See Alg. 1 for the pseudo-code of the proposed algorithm.

Algorithm 1 EG-L2-Optimal Affine Transformation
1: procedure CORRECTAFFINETRANSFORMATION
2: Input:
3: F – fundamental matrix.
4: p1, p2 – corresponding point pair.
5: A′ – measured affine transformation.
6: Output:
7: A – optimally refined affine transformation.
8: Algorithm:
9: l1 := FT p2; l2 := Fp1; n1 := [la

1 ; lb
1 ]/|[la

1 ; lb
1 ]|2; n2 := [la

2 ; lb
2 ]/|[la

2 ; lb
2 ]|2;

10: s1 := f11nx
1 + f12ny

1; s2 := f21nx
1 + f22ny

1; s3 := f31nx
1 + f32ny

1;

11: β := (1/ |s1x2 + s2y2 + s3|)
√

la
2 la

2 + lb
2 lb

2 ;
12: C := eye(6,6); C55 := 0; C66 := 0;
13: C15 :=−βnx

2; C26 :=−βnx
2; C35 :=−βny

2; C46 :=−βny
2;

14: C51 :=−βnx
2; C62 :=−βnx

2; C53 :=−βny
2; C64 :=−βny

2;
15: b := [a′1;a′2;a′3;a′4;−nx

1;−ny
1];

16: x := C−1b;
17: A := [x1,x2;x3,x4];

3 Is LSQ Minimization of the Affine Parameters Correct?

It is shown in this section that the minimization of the Frobenious-norm has both algebraic
and geometric interpretations for local affine transformations.

Matrix A without the translation is a 2× 2 linear transformation, therefore, it is deter-
mined by two points. (The projection of the origin remains the same.) Let us choose points
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[
1 0

]T and
[
0 1

]T . Then the minimizing formula for the former one is as follows:
∥∥∥∥A
[

1
0

]
−A′

[
1
0

]∥∥∥∥
2

2
=

∥∥∥∥(A−A′)
[

1
0

]∥∥∥∥
2

2
=

∥∥∥∥
[

a1−a′1 a2−a′2
a3−a′3 a4−a′4

][
1
0

]∥∥∥∥
2

2
=

∥∥∥∥
[

a1−a′1
a3−a′3

]∥∥∥∥
2

2
=

(a1−a′1)
2 +(a3−a′3)

2 = 0. (12)

The minimization for the second point is fairly similar as
∥∥∥∥A
[

0
1

]
−A′

[
0
1

]∥∥∥∥
2

2
=

∥∥∥∥
[

a2−a′2
a4−a′4

]∥∥∥∥
2

2
= (a2−a′2)

2 +(a4−a′4)
2 = 0. (13)

By combining both Eqs. 12, 13 the Frobenious-norm of difference matrix A−A′ is obtained.
As a consequence, minimizing the Frobenious-norm of the difference matrix is equivalent to
the optimization of its effect on points. Therefore, the squared differences of the parameters
have both algebraic and geometric interpretations.

4 Experimental Results
First, we show how to get ground truth affine transformations. Then we test the proposed
theory on both synthesized and real-world data.

4.1 Affine Transformation from Homography
Local affine transformation A can be derived from the parameters of the homography [21].
The last column of the affine transformation A determines the translation. Suppose that ho-
mography H is given. The correspondence between homogeneous points p1 = [x1 y1 1]T

and p2 = [x2 y2 1]T is written as Hp1 ∼ p2. The linear part (left 2×2 submatrix) of the
affine parameters can be written as the partial derivatives of this perspective transformation:

a1 j =
h1 j−h3 jx2

s
a2 j =

h2 j−h3 jy2

s
j ∈ {1,2}, (14)

where s = hT
3 p1

2. This is described in dept in [1]. The translation part of A is determined
by the point locations. During the experiments, the ground truth local affine transformations
are calculated using this relationship from the ground truth homographies.

4.2 Synthesized tests
For synthesized testing, two perspective cameras are generated by their projection matrices
P1 and P2. Their positions are randomized in the plane Z = 60 which is parallel to plane
XY . Both cameras point towards the origin. Their common focal length and principal point
are 600 and [300 300]T , respectively. Then 50 spatial points are generated on a random
plane that passes through the origin, and the points are projected onto the cameras. The
ground truth affine transformation related to each point is calculated using Eq. 14 based on
the homography. Tests are repeated 500 times at every noise level.

2Parameter hT
i is the i-th row of H.
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Figure 2: Error of the original and optimal affine transformations w.r.t. the noise level. The
average L2 distance from the ground truth transformation is plotted as a function of the σ
value of the Gaussian noise (in pixels). The noise is added to the affine transformations
and point locations. (Red Curve) The ground truth fundamental matrix is used. (Black
Curve) The fundamental matrix is estimated using the noisy point correspondences by the
normalized 8-point algorithm followed by a Levenberg-Marquardt optimization minimizing
the symmetric epipolar error. In the median figure, the black and red curves coincide.

Fig. 2 shows the mean (left) and median (right) distances of the original noisy transfor-
mations and that of the optimal ones w.r.t. the ground truth data. Zero-mean Gaussian noise
is added to the elements of the affine transformations and point locations. The error (vertical
axis) is the mean of the L2-norms of the difference matrices of the obtained and ground truth
data. The horizontal axis shows the σ value of the noise.

The red curve shows the error if the ground truth fundamental matrix is used. For the
black curve, the fundamental matrix is estimated using the noisy point locations by the nor-
malized 8-point algorithm followed by Levenberg-Marquardt optimization minimizing the
symmetric epipolar error. The refined transformations are closer to the ground truth matrices
than the original ones. There is no significant difference between the median and mean plots
and between results obtained on the ground truth and the estimated fundamental matrix.

The processing time of the proposed method is negligible since it consists of a few
operations. It is calculated in C++ in around 0.04 milliseconds per point on a 2.3 GHz PC.

4.3 Tests on Real Data
The proposed theory is tested on the annotated AdelaideRMF dataset3 and on image pairs
"graffiti"4, "stairs" and "glasscasea" (see Fig. 3). In the last three pairs, we manually marked
point correspondences and assigned them to planes. The ground truth homographies are
computed using the annotated point correspondences5.

Several affine-covariant feature detectors are run on all image pairs. The following affine-
covariant detectors are applied: AAKAZE, ABRISK, AORB, ASIFT, ASURF, AHessian-
Affine6, MODS7, MSER, Harris-Affine and Hessian-Affine8.

3Available at http://cs.adelaide.edu.au/~hwong/doku.php?id=data
4Available at http://www.robots.ox.ac.uk/~vgg/research/affine/
5Available at http://web.eee.sztaki.hu/home4/node/56
6ASIFT is downloaded from http://www.ipol.im/pub/art/2011/my-asift. The "A-forms" of
AKAZE, BRISK, ORB, SIFT, SURF, Hessian-Affine are obtained by replacing SIFT in the view-synthesizer.

7MODS is downloaded from http://cmp.felk.cvut.cz/wbs
8MSER, Har-Aff, and Hes-Aff downloaded from http://www.robots.ox.ac.uk/~vgg/research/
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Detector (a) (b) (c) (d) (e) (f) (g) (h) (i) mean median

AAKAZE Observed 0.26 0.30 0.17 0.30 0.26 0.18 0.25 0.62 0.38 0.30 0.26
EG-L2-Opt 0.21 0.22 0.12 0.19 0.19 0.14 0.16 0.54 0.26 0.23 0.19

ABRISK Observed 0.28 0.33 0.27 0.38 0.28 0.30 0.28 1.31 0.31 0.42 0.30
EG-L2-Opt 0.21 0.25 0.19 0.24 0.22 0.18 0.18 0.50 0.20 0.24 0.21

AHES-AFF Observed 0.19 0.23 0.18 0.20 0.14 0.17 0.21 0.24 0.22 0.20 0.20
EG-L2-Opt 0.14 0.17 0.11 0.13 0.09 0.11 0.13 0.14 0.15 0.13 0.13

AORB Observed 0.34 0.34 0.15 0.45 0.23 0.24 0.27 - 0.28 0.29 0.28
EG-L2-Opt 0.27 0.28 0.10 0.29 0.17 0.18 0.18 - 0.20 0.20 0.19

ASIFT Observed 0.27 0.28 0.27 0.26 0.21 0.22 0.27 0.23 0.29 0.26 0.27
EG-L2-Opt 0.20 0.21 0.15 0.17 0.14 0.17 0.16 0.17 0.18 0.17 0.17

ASURF Observed 0.23 0.27 0.17 0.30 0.22 0.17 0.25 0.26 0.27 0.24 0.25
EG-L2-Opt 0.18 0.20 0.11 0.21 0.16 0.12 0.17 0.18 0.19 0.18 0.18

HAR-AFF Observed 0.24 0.25 0.15 0.24 0.16 0.27 0.20 0.38 0.28 0.24 0.24
EG-L2-Opt 0.18 0.18 0.09 0.19 0.12 0.19 0.13 0.35 0.17 0.16 0.18

HES-AFF Observed 0.24 0.22 0.20 0.22 0.13 0.20 0.19 - 0.24 0.21 0.21
EG-L2-Opt 0.17 0.16 0.10 0.17 0.09 0.09 0.12 - 0.15 0.13 0.14

MODS Observed 0.29 0.40 0.23 0.31 0.26 0.25 0.61 0.24 0.47 0.34 0.29
EG-L2-Opt 0.20 0.25 0.13 0.22 0.19 0.17 0.42 0.19 0.32 0.23 0.20

MSER Observed 0.42 0.69 0.46 0.34 0.29 0.31 0.42 0.51 0.34 0.42 0.42
EG-L2-Opt 0.24 0.32 0.23 0.25 0.20 0.22 0.25 0.31 0.21 0.25 0.24

Table 1: Errors of the affine-covariant feature detectors "Observed" and their "EG-L2-Opt"
corrections. The error is the mean of the L2-norms of the difference matrices of the obtained
and ground truth affine transformations. Test pairs: (a) hartley, (b) johnsonnb, (c) neem, (d)
sene, (e) oldclassicswing, (f) ladysymon (g) graffiti (h) stairs (i) glasscasea

AAKAZE ABRISK AHES-AFF AORB ASIFT ASURF HAR-AFF HES-AFF MODS MSER

Inliers 239 110 1420 145 2082 837 64 73 941 78
Time 81.91 81.38 89.30 86.39 81.34 84.00 4.10 3.22 52.92 0.41

Table 2: The average number of inliers – correspondences lying on an annotated homog-
raphy – for different feature detectors. Processing times in seconds on an Intel Core4Quad
2.33 GHz PC with 4 GByte memory using only a single core.10

Correspondences of features points obtained by matching [14] are assigned to the closest
annotated homography. The distance between a point pair and a homography is defined as the
re-projection error (Hp1 ∼ p2). If a correspondence is farther from its closest homography
than 1.0 px, it is discarded from the evaluation since the ground truth affine transformation
for such correspondence can not be calculated. For the remaining correspondences, ground
truth affine transformations are calculated using Eqs. 1. Fundamental matrices are computed
by the normalized 8-point algorithm followed by a numerical refinement stage minimizing
symmetric epipolar error by Levenberg-Marquardt optimization [22].

The errors are shown in Table 1. The error is the mean of the L2-norms of the difference
matrices of the obtained and ground truth data. Each column represents a test pair except
the last two ones which show the mean and median errors. The corresponding odd and even
rows visualize the mean error of the observed affine transformations given by each feature
detector and that of the refined, EG-L2-Opt ones. The error metric is the same as used for the
synthesized tests. Every method is applied using their default parameterization. The median
values show the same trend. The most important conclusion of these tests is that the refined,
EG-L2-Opt affine transformations are always more accurate than the observed ones.

Hessian-Affine augmented with the view-synthesizer of ASIFT (denoted by AHES-AFF)
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(a) "hartley" (b) "johnsonnb" (c) "neem"

(d) "sene" (e) "oldclassicswing" (f) "ladysymon"

(g) "graffiti" (h) "stairs" (i) "glasscasea"

Figure 3: The first frames of the selected image pairs with a few local affinities each repre-
sented by an ellipse.

obtains the most accurate affine transformations (see Table 1) and provides many point cor-
respondences as well (see Table 2). If the required number of correspondences needs not
be high, Hessian-Affine without view-synthesizing might be the method of choice since it is
significantly faster and its accuracy is nearly the same.

4.4 Improvements on Homography and Surface Normal Estimates

This section presents experiments showing that EG-L2-Opt affinities lead to more accurate
homography and surface normal estimates.

For homography estimation the same synthetic scene is constructed as in Section 4.2: a
random plane is generated and sampled at ten locations which are projected onto the cameras.
The method proposed by Koeser [11] is applied to one of the ten correspondences and the
related affinity. Tests are repeated 500 times for every noise level. Fig 4(a) shows that
homographies calculated from the EG-L2-Opt refined data are the most accurate ones. The
error metric is the mean re-projection error (in pixels) computed for the point locations.

For surface normal estimation, the technique proposed recently by Barath et al. [2] is
performed. They show that a one-to-one relationship exists between an affine transformation
and the related surface normal and introduce normal estimators. In our tests, the same testing

10Information in Table 2 is not assessing the precision of affine transformation, the main topic of the paper. It
complements Table 1 in providing broader characterization of detector performance.
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environment is used as proposed in [2] and FNE normal estimator11 is applied to both the
initial and EG-L2-Opt affinities. Fig. 4(b) confirms that the proposed technique makes the
surface normals more accurate.

(a) (b)

Figure 4: Mean, (a) left, and median, (a) right, re-projection errors (in pixels) of the homog-
raphy estimation [11] applied to the noisy and the EG-L2-Opt refined affinities. Mean, (b)
left, and median, (b) right, angular errors (in degrees) of the surface normals estimated from
the initial and EG-L2-Opt refined affinities. The errors are plotted as the function of the σ
value of the isotropic 6D zero-mean Gaussian noise.

5 Conclusions

We showed how to improve the accuracy of a local affine transformation obtained by an
affine-covariant feature detector by considering the epipolar constraint. The proposed algo-
rithm is optimal in the least squares sense. Its computational cost is negligible. The proposed
least squares minimization has an intuitive geometric interpretation.

The introduced EG-L2-Opt procedure is validated on real-world image pairs. It improves
the accuracy of all tested affine-covariant detectors. On average, the error of the refined
affinities is reduced to about 65%. The EG-L2-Opt affinities improve the accuracy of surface
normal and homography estimates as well.

As a side-effect, the experiments quantitatively compared the precision of affine-covariant
feature detectors. The Hessian-Affine detector combined with the view-synthesizer of ASIFT
obtains the most accurate affinities.
The source code is available at http://web.eee.sztaki.hu/home4/node/56
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