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Figure 1: Sample results from our method. The image (a) shows the raw
events and (b) is the result of our reconstruction. The time since the last
event has happened for each pixel is depicted as a surface in (c) with the
positive and negative events shown in green and red respectively.

Event cameras or neuromorphic cameras mimic the human perception
system as they measure the per-pixel intensity change rather than the ac-
tual intensity level. In contrast to traditional cameras, such cameras cap-
ture new information about the scene at MHz frequency in the form of
sparse events. The high temporal resolution comes at the cost of losing
the familiar per-pixel intensity information.

In this work we aim to bridge the gap between the time-continuous
domain of events and frame-based computer vision algorithms. We pro-
pose a simple method for simultaneous denoising and intensity recon-
struction for neuromorphic cameras in real-time (see Fig. 1 for a sample
output of our method). In contrast to very recent work on the same topic
by Bardow et al. [1], we formulate our algorithm on an event-basis, avoid-
ing the need to simultaneously estimate the optical flow. We cast the inten-
sity reconstruction problem as an energy minimisation, where we model
the camera noise in a data term based on the generalised Kullback-Leibler
divergence. The optimisation problem is defined on a manifold induced
by the timestamps of new events (see Fig. 1(c)). We show how to optimise
this energy using variational methods and achieve real-time performance
by implementing the energy minimisation on a graphics processing unit
(GPU). We release software to provide live intensity image reconstruction
to all users of DVS cameras1. We believe this will be a vital step towards
a wider adoption of this kind of cameras.

Image Formation We have given a time sequence of events (en)N
n=1

from a neuromorphic camera, where en = {xn,yn,θ n, tn} is a single event
consisting of the pixel coordinates (xn,yn) ∈ Ω ⊂ R2, the polarity θ n ∈
{−1,1} and a monotonically increasing timestamp tn.

A positive θ n indicates that at the corresponding pixel the intensity
has increased by a certain threshold ∆+ > 0 in the log-intensity space.
Vice versa, a negative θ n indicates a drop in intensity by a second thresh-
old ∆− > 0. We can now reconstruct an intensity image un : Ω→ R+ by
integrating the intensity changes indicated by the events over time.

Taking the exp(·), the update in intensity space caused by one event
en can be written as

f n(xn,yn) = un−1(xn,yn) ·

{
c1 if θ n > 0
c2 if θ n < 0

, (1)

where c1 = exp(∆+), c2 = exp(−∆−). Starting from a known u0 and
assuming no noise, this integration procedure will reconstruct a perfect
image (up to the radiometric discretisation caused by ∆±).

Image Reconstruction Since the events stem from real camera hard-
ware, there is noise in the events. Also the initial intensity image u0 is

1https://github.com/VLOGroup/dvs-reconstruction

unknown and can not be reconstructed from events alone. Therefore the
reconstruction of un from f n can not be solved without imposing some
regularity in the solution. We therefore formulate the intensity image re-
construction problem as the solution of the optimisation problem

un = argmin
u∈C1(Ω,R+)

[E(u) = D(u, f n)+R(u)] , (2)

where D(u, f n) is a data term that models the camera noise and R(u) is a
regularisation term that enforces some smoothness in the solution.

Moving edges in the image cause events once a change in logarithmic
intensity is bigger than a threshold. The collection of all events (en)N

n=1
can be recorded in a spatiotemporal volume V ⊂Ω×T . V is very sparsely
populated, which makes it infeasible to directly store it. As in [2], we
observe that events lie on a lower-dimensional manifold within V , defined
by the most recent timestamp for each pixel (x,y) ∈Ω. A visualisation of
this manifold for a real-world scene can be seen in Fig. 1(c). Benosman et
al. [2] fittingly call this manifold the surface of active events. We propose
to incorporate the surface of active events into our method by formulating
the optimisation directly on the manifold.

We chose the Total Variation as regularisation term R(u) and the gen-
eralized Kullback-Leibler divergence as data term

D(u, f n) := λ

∫
Ω

(u− f n logu)dx , (3)

whose minimiser is known to be the correct ML-estimate under the as-
sumption of Poisson-distributed noise between u and f n [4]. In the paper
we show how to formulate both on the surface of active events and how to
efficiently solve the resulting optimisation problem using the Primal-Dual
algorithm of Chambolle and Pock [3].

Figure 2: Comparison to the method of [1]. The first row shows the raw
input events that have been used for both methods. The second row de-
picts the results of Bardow et al., and the last row shows our result. We
can see that out method produces more details (e.g. face, beard) as well as
more graceful gray value variations in untextured areas, where [1] tends
to produce a single gray value.
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